Skip to main content

Epidemiology and Hereditary Aspects of Acute Leukemia

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Recent projections for the United States (USA) estimate that 5,760 patients are diagnosed annually with acute lymphocytic leukemia (ALL) and 12,810 with acute myeloid leukemia (AML), while approximately 1,400 patients die from ALL and 5,170 from AML [1]. Together these forms of acute leukemia represent about 1.3 % of all newly diagnosed cancers and 1.2 % of all cancer deaths in the USA [1]. Advances in understanding of immunology and molecular/genetic features of the acute leukemias along with laboratory improvements in immunophenotyping and cytogenetic characterization have led to the recognition of molecularly defined subtypes of ALL and AML, targeted therapeutics, and recognition of distinct prognostic groups. The most recent World Health Organization (WHO) classification of hematopoietic malignancies considers three major categories of acute leukemia: AML and related myeloid precursor neoplasms, precursor lymphoid neoplasms (encompassing the entities previously known as ALL), and acute leukemias of ambiguous lineage [2]. Consistent with classifications used in cancer registries, to date most epidemiologic investigations have considered all acute leukemias combined or the broad categories of ALL and AML, with only a few evaluating epidemiologic features or risk factors according to molecular subtypes [3–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    Article  PubMed  Google Scholar 

  2. Swerdlow SH, Campo E, Harris NL, et al., editors. World Health Organization classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008.

    Google Scholar 

  3. Shu X, Perentesis J, Wen W, et al. Parental exposure to medications and hydrocarbons and ras mutations in children with acute lymphoblastic leukmia: A report from the Children’s Oncology Group. Cancer Epidemiol Biomarkers Prev. 2004;13:1230–5.

    PubMed  CAS  Google Scholar 

  4. Spector LG, Xie Y, Robison LL, et al. Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the Children’s Oncology Group. Cancer Epidemiol Biomarkers Prev. 2005;14:651–5.

    Article  PubMed  CAS  Google Scholar 

  5. Scelo G, Metayer C, Zhang L, et al. Household exposure to paint and petroleum solvents, chromosomal translocations, and the risk of childhood leukemia. Environ Health Perspect. 2009;117:133–9.

    PubMed  Google Scholar 

  6. National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch. Surveillance, Epidemiology, and End Results (SEER) Program (http://www.seer.cancer.gov) SEER*Stat Database: Incidence - SEER-9 Regs Research Data, Nov 2009 Sub (1973–2007)  <  Katrina/Rita Population Adjustment>, National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2010, based on the November 2009 submission.

  7. Linet MS, Devesa SS, Morgan GJ. The leukemias. In: Schottenfeld D, Fraumeni Jr J, editors. Cancer epidemiology and prevention. 3rd ed. New York: Oxford University Press; 2006. p. 841–71.

    Chapter  Google Scholar 

  8. Ross J, Spector L. Cancers in children. In: Schottenfeld D, Fraumeni Jr J, editors. Cancer epidemiology and prevention. 3rd ed. New York: Oxford University Press; 2006. p. 1251–68.

    Chapter  Google Scholar 

  9. Anderson LM, Diwan BA, Fear NT, Roman E. Critical windows of exposure for children’s health: cancer in human epidemiological studies and neoplasms in experimental animal models. Environ Health Perspect. 2000;108 Suppl 3:573–94.

    PubMed  Google Scholar 

  10. Greaves MF. Biological models for leukaemia and lymphoma. IARC Sci Publ. 2004;351–72.

    Google Scholar 

  11. van Steensel-Moll HA, Valkenburg HA, Vandenbroucke JP, van Zanen GE. Are maternal fertility problems related to childhood leukaemia? Int J Epidemiol. 1985;14:555–9.

    Article  PubMed  Google Scholar 

  12. Yeazel M, Buckley J, Woods W, Ruccione K, Robison L. History of maternal fetal loss and increased risk of childhood acute leukemia at an early age. Cancer. 1995;75:1718–27.

    Article  PubMed  CAS  Google Scholar 

  13. Schuz J, Kaatsch P, Kaletsch U, Meinert R, Michaelis J. Association of childhood cancer with factors related to pregnancy and birth. Int J Epidemiol. 1999;28:631–9.

    Article  PubMed  CAS  Google Scholar 

  14. Roman E, Simpson J, Ansell P, et al. Perinatal and reproductive factors: a report on haematological malignancies from the UKCCS. Eur J Cancer. 2005;41:749–59.

    Article  PubMed  CAS  Google Scholar 

  15. Ross JA, Potter JD, Shu XO, Reaman GH, Lampkin B, Robison LL. Evaluating the relationships among maternal reproductive history, birth characteristics, and infant leukemia: a report from the Children’s Cancer Group. Ann Epidemiol. 1997;7:172–9.

    Article  PubMed  CAS  Google Scholar 

  16. Stewart A, Webb J, Hewitt D. A survey of childhood malignancies. Br Med J. 1958;1:1495–508.

    Article  PubMed  CAS  Google Scholar 

  17. Westergaard T, Andersen P, Pedersen J, et al. Birth characteristics, sibling patterns, and acute leukemia risk in childhood: a population-based cohort study. J Natl Cancer Inst. 1997;89:939–47.

    Article  PubMed  CAS  Google Scholar 

  18. Cnattingius S, Zack M, Ekbom A, Gunnarskog J, Linet M, Adami H. Prenatal and neonatal risk factors for childhood myeloid leukemia. Cancer Epidemiol Biomarkers Prev. 1995;4:441–5.

    PubMed  CAS  Google Scholar 

  19. Cnattingius S, Zack M, Ekbom A, et al. Prenatal and neonatal risk factors for childhood lymphatic leukemia. J Natl Cancer Inst. 1995;87:908–14.

    Article  PubMed  CAS  Google Scholar 

  20. Macmahon B, Newill VA. Birth characteristics of children dying of malignant neoplasms. J Natl Cancer Inst. 1962;28:231–44.

    PubMed  CAS  Google Scholar 

  21. Shu XO, Gao YT, Brinton LA, et al. A population-based case–control study of childhood leukemia in Shanghai. Cancer. 1988;62:635–44.

    Article  PubMed  CAS  Google Scholar 

  22. Maule MM, Vizzini L, Czene K, Akre O, Richiardi L. How the effect of maternal age on the risk of childhood leukemia changed over time in Sweden, 1960–2004. Environ Health Perspect. 2009;117:299–302.

    PubMed  Google Scholar 

  23. Smith M. Considerations on a possible viral etiology for B-precursor acute lymphoblastic leukemia of childhood. J Immunother. 1997;20:89–100.

    Article  PubMed  CAS  Google Scholar 

  24. Hakulinen T, Hovi L, Karkinen J, Penttinen K, Saxen L. Association between influenza during pregnancy and childhood leukaemia. Br Med J. 1973;4:265–7.

    Article  PubMed  CAS  Google Scholar 

  25. Lehtinen M, Koskela P, Ogmundsdottir H, et al. Maternal herpesvirus infections and risk of acute lymphoblastic leukemia in the offspring. Am J Epidemiol. 2003;158:207–13.

    Article  PubMed  Google Scholar 

  26. Randolph VL, Heath Jr CW. Influenza during pregnancy in relation to subsequent childhood leukemia and lymphoma. Am J Epidemiol. 1974;100:399–409.

    PubMed  CAS  Google Scholar 

  27. Tedeschi R, Luostarinen T, Marus A, et al. No risk of maternal EBV infection for childhood leukemia. Cancer Epidemiol Biomarkers Prev. 2009;18:2790–2.

    Article  PubMed  Google Scholar 

  28. Smith MA, Strickler HD, Granovsky M, et al. Investigation of leukemia cells from children with common acute lymphoblastic leukemia for genomic sequences of the primate polyomaviruses JC virus, BK virus, and simian virus 40. Med Pediatr Oncol. 1999;33:441–3.

    Article  PubMed  CAS  Google Scholar 

  29. MacKenzie J, Gallagher A, Clayton RA, et al. Screening for herpesvirus genomes in common acute lymphoblastic leukemia. Leukemia. 2001;15:415–21.

    Article  PubMed  CAS  Google Scholar 

  30. Isa A, Priftakis P, Broliden K, Gustafsson B. Human parvovirus B19 DNA is not detected in Guthrie cards from children who have developed acute lymphoblastic leukemia. Pediatr Blood Cancer. 2004;42:357–60.

    Article  PubMed  Google Scholar 

  31. Kaatsch P, Scheidemann-Wesp U, Schuz J. Maternal use of antibiotics and cancer in the offspring: results of a case–control study in Germany. Cancer Causes Control. 2010;21:1335–45.

    Article  PubMed  Google Scholar 

  32. Wen W, Shu X-O, Potter J, et al. Parental medication use and risk of childhood acute lymphoblastic leukemia. Cancer. 2002;95:1786–94.

    Article  PubMed  Google Scholar 

  33. Brinton LA, Kruger Kjaer S, Thomsen BL, et al. Childhood tumor risk after treatment with ovulation-stimulating drugs. Fertil Steril. 2004;81:1083–91.

    Article  PubMed  Google Scholar 

  34. Robison LL, Buckley JD, Daigle AE, et al. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring. An epidemiologic investigation implicating marijuana (a report from the Childrens Cancer Study Group). Cancer. 1989;63:1904–11.

    PubMed  CAS  Google Scholar 

  35. Trivers K, Mertens A, Ross J, Steinbuch M, Olshan A, Robison L. Parental marijuana use and risk of childhood acute myeloid leukaemia: a report from the Children’s Cancer Group (United States and Canada). Paediatr Perinat Epidemiol. 2006;20:110–8.

    Article  PubMed  Google Scholar 

  36. Shu X-O, Potter J, Linet M, et al. Diagnostic X-rays and ultrasound exposure and risk of childhood acute lymphoblastic leukemia by immunophenotype. Cancer Epidemiol Biomarkers Prev. 2002;11:177–85.

    PubMed  Google Scholar 

  37. Wakeford R. Childhood leukaemia following medical diagnostic exposure to ionizing radiation in utero or after birth. Radiat Prot Dosimetry. 2008;132:166–74.

    Article  PubMed  CAS  Google Scholar 

  38. Preston DL, Cullings H, Suyama A, et al. Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst. 2008;100:428–36.

    Article  PubMed  Google Scholar 

  39. Hatch M, Brenner A, Bogdanova T, et al. A screening study of thyroid cancer and other thyroid diseases among individuals exposed in utero to iodine-131 from Chernobyl fallout. J Clin Endocrinol Metab. 2009;94:899–906.

    Article  PubMed  CAS  Google Scholar 

  40. United Nations. Effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation—UNSCEAR, 2006 Report, Volume 1—Report to the General Assembly, with Scientific Annexes A and B. Vienna: United Nations; 2008.

    Google Scholar 

  41. Gardner MJ, Snee MP, Hall AJ, Powell CA, Downes S, Terrell JD. Results of case–control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. BMJ. 1990;300:423–9.

    Article  PubMed  CAS  Google Scholar 

  42. Roman E, Doyle P, Maconochie N, Davies G, Smith PG, Beral V. Cancer in children of nuclear industry employees: report on children aged under 25 years from nuclear industry family study. BMJ. 1999;318:1443–50.

    Article  PubMed  CAS  Google Scholar 

  43. Roman E, Doyle P, Ansell P, Bull D, Beral V. Health of children born to medical radiographers. Occup Environ Med. 1996;53: 73–9.

    Article  PubMed  CAS  Google Scholar 

  44. Johnson KJ, Alexander BH, Doody MM, et al. Childhood cancer in the offspring born in 1921–1984 to US radiologic technologists. Br J Cancer. 2008;99:545–50.

    Article  PubMed  CAS  Google Scholar 

  45. Hug K, Grize L, Seidler A, Kaatsch P, Schuz J. Parental occupational exposure to extremely low frequency magnetic fields and childhood cancer: a German case–control study. Am J Epidemiol. 2010;171:27–35.

    Article  PubMed  Google Scholar 

  46. Zahm SH, Ward MH. Pesticides and childhood cancer. Environ Health Perspect. 1998;106 Suppl 3:893–908.

    Article  PubMed  Google Scholar 

  47. Infante-Rivard C, Weichenthal S. Pesticides and childhood cancer: an update of Zahm and Ward’s 1998 review. J Toxicol Environ Health B Crit Rev. 2007;10:81–99.

    Article  PubMed  CAS  Google Scholar 

  48. Wigle D, Turner M, Krewski D. A systematic review and meta-analysis of childhood leukemia and parental occupational pesticide exposure. Environ Health Perspect. 2009;117:1505–13.

    Article  PubMed  CAS  Google Scholar 

  49. Van Maele-Fabry G, Lantin AC, Hoet P, Lison D. Childhood leukaemia and parental occupational exposure to pesticides: a systematic review and meta-analysis. Cancer Causes Control. 2010;21:787–809.

    Article  PubMed  Google Scholar 

  50. Wigle DT, Arbuckle TE, Turner MC, et al. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J Toxicol Environ Health B Crit Rev. 2008;11:373–517.

    Article  PubMed  CAS  Google Scholar 

  51. Institute of Medicine (U.S.) Committee on the Assessment of Asthma and Indoor Air. Clearing the Air: Asthma and Indoor Air Exposures. Washington: National Academy Press; 2000.

    Google Scholar 

  52. McKinney P, Fear N, Stockton D, UK Childhood Cancer Study Investigators. Parental occupation at periconception: findings from the United Kingdom Childhood Cancer Study. Occup Environ Med. 2003;60:901–9.

    Article  PubMed  CAS  Google Scholar 

  53. Boffetta P, Tredaniel J, Greco A. Risk of childhood cancer and adult lung cancer after childhood exposure to passive smoke: a meta-analysis. Environ Health Perspect. 2000;108:73–82.

    Article  PubMed  CAS  Google Scholar 

  54. Chang JS. Parental smoking and childhood leukemia. Methods Mol Biol. 2009;472:103–37.

    Article  PubMed  Google Scholar 

  55. Lee K-M, Ward M, Han S, et al. Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk. Leuk Res. 2009;33:250–8.

    Article  PubMed  CAS  Google Scholar 

  56. Infante-Rivard C, El-Zein M. Parental alcohol consumption and childhood cancers: a review. J Toxicol Environ Health B Crit Rev. 2007;10:101–29.

    Article  PubMed  CAS  Google Scholar 

  57. MacArthur AC, McBride ML, Spinelli JJ, Tamaro S, Gallagher RP, Theriault G. Risk of childhood leukemia associated with parental smoking and alcohol consumption prior to conception and during pregnancy: the Cross-Canada Childhood Leukemia Study. Cancer Causes Control. 2008;19:283–95.

    Article  PubMed  Google Scholar 

  58. Latino-Martel P, Chan DSM, Druesne-Pecollo N, Barrandon E, Hercberg S, Norat T. Maternal alcohol consumption during pregnancy and risk of childhood leukemia: systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2010;19:1238–60.

    Article  PubMed  CAS  Google Scholar 

  59. Jensen C, Block G, Buffler P, et al. Maternal dietary risk factors in childhood acute lymphoblastic leukemia (United States). Cancer Causes Control. 2004;15:559–70.

    Article  PubMed  Google Scholar 

  60. Petridou E, Ntouvelis E, Dessypris N, Terzidis A, Trichopoulos D, Childhood Hematology-Oncology Group. Maternal diet and acute lymphoblastic leukemia in young children. Cancer Epidemiol Biomarkers Prev. 2005;14:1935–9.

    Article  PubMed  Google Scholar 

  61. Milne E, Royle J, Miller M, et al. Maternal folate and other vitamin supplementation during pregnancy and risk of acute lymphoblastic leukemia in the offspring. Int J Cancer. 2010;126:2690–9.

    PubMed  CAS  Google Scholar 

  62. Kwan M, Metayer C, Crouse V, Buffler P. Maternal illness and drug/medication use during the period surrounding pregnancy and risk of childhood leukemia among offspring. Am J Epidemiol. 2007;165:27–35.

    Article  PubMed  Google Scholar 

  63. Caughey R, Michels K. Birth weight and childhood leukemia: a meta-analysis and review of the current evidence. Int J Cancer. 2009;124:2658–70.

    Article  PubMed  CAS  Google Scholar 

  64. Milne E, Royle J, de Klerk N, et al. Fetal growth and risk of childhood acute lymphoblastic leukemia: results from an Australian case–control study. Am J Epidemiol. 2009;170:221–8.

    Article  PubMed  CAS  Google Scholar 

  65. Shu X-O, Linet M, Steinbuch M, et al. Breast-feeding and risk of childhood acute leukemia. J Natl Cancer Inst. 1999;91:1765–72.

    Article  PubMed  CAS  Google Scholar 

  66. UK Childhood Cancer Study Investigators. Breastfeeding and childhood cancer. Br J Cancer. 2001;85:1685–94.

    Article  Google Scholar 

  67. Martin R, Gunnell D, Owen C, Smith G. Breast-feeding and childhood cancer: a systematic review with metaanalysis. Int J Cancer. 2005;117:1020–31.

    Article  PubMed  CAS  Google Scholar 

  68. MacArthur AC, McBride ML, Spinelli JJ, Tamaro S, Gallagher RP, Theriault GP. Risk of childhood leukemia associated with vaccination, infection, and medication use in childhood: the Cross-Canada Childhood Leukemia Study. Am J Epidemiol. 2008;167:598–606.

    Article  PubMed  Google Scholar 

  69. Alexander FE. Clusters and clustering of childhood cancer: a review. Eur J Epidemiol. 1999;15:847–52.

    Article  PubMed  CAS  Google Scholar 

  70. Heath Jr CW. Community clusters of childhood leukemia and lymphoma: evidence of infection? Am J Epidemiol. 2005;162:817–22.

    Article  PubMed  Google Scholar 

  71. Rubin C, Holmes A, Belson M, et al. Investigating childhood leukemia in Churchill County, Nevada. Environ Health Perspect. 2007;115:151–7.

    Article  PubMed  CAS  Google Scholar 

  72. Greaves M. Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer. 2006;6:193–203.

    Article  PubMed  CAS  Google Scholar 

  73. Urayama K, Buffler P, Gallagher E, Ayoob J, Ma X. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. Int J Epidemiol. 2010:1–15.

    Google Scholar 

  74. Gilham C, Peto J, Simpson J, et al. Day care in infancy and risk of childhood acute lymphoblastic leukaemia: findings from UK case–control study. BMJ. 2005;330:1294.

    Article  PubMed  CAS  Google Scholar 

  75. Neglia JP, Linet MS, Shu XO, et al. Patterns of infection and day care utilization and risk of childhood acute lymphoblastic leukaemia. Br J Cancer. 2000;82:234–40.

    Article  PubMed  CAS  Google Scholar 

  76. Roman E, Simpson J, Ansell P, et al. Childhood acute lymphoblastic leukemia and infections in the first year of life: a report from the United Kingdom Childhood Cancer Study. Am J Epidemiol. 2007;165:496–504.

    Article  PubMed  CAS  Google Scholar 

  77. Kinlen L. Evidence for an infective cause of childhood leukaemia: comparison of a Scottish new town with nuclear reprocessing sites in Britain. Lancet. 1988;2:1323–7.

    Article  PubMed  CAS  Google Scholar 

  78. Kinlen LJ. Epidemiological evidence for an infective basis in childhood leukaemia. Br J Cancer. 1995;71:1–5.

    Article  PubMed  CAS  Google Scholar 

  79. Law G, Parslow R, Roman E, United Kingdom Childhood Cancer Study Investigators. Childhood cancer and population mixing. Am J Epidemiol. 2003;158:328–36.

    Article  PubMed  Google Scholar 

  80. McNally R, Eden T. An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br J Haematol. 2004;127(3):243–63.

    Article  PubMed  Google Scholar 

  81. Linabery A, Jurek A, Duval S, Ross J. The association between atopy and childhood/adolescent leukemia: a meta-analysis. Am J Epidemiol. 2010;171:749–64.

    Article  PubMed  Google Scholar 

  82. Linet MS, Kim KP, Rajaraman P. Children’s exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations. Pediatr Radiol. 2009;39 Suppl 1:S4–26.

    Article  PubMed  Google Scholar 

  83. Boice Jr J. Ionizing radiation. In: Schottenfeld D, Fraumeni Jr J, editors. Cancer epidemiology and prevention. New York: Oxford University Press; 2006. p. 259–935.

    Chapter  Google Scholar 

  84. Ron E, Modan B, Boice Jr JD. Mortality after radiotherapy for ringworm of the scalp. Am J Epidemiol. 1988;127:713–25.

    PubMed  CAS  Google Scholar 

  85. Allard A, Haddy N, Le Deley MC, et al. Role of radiation dose in the risk of secondary leukemia after a solid tumor in childhood treated between 1980 and 1999. Int J Radiat Oncol Biol Phys. 2010;78(5):1474–82.

    Article  PubMed  Google Scholar 

  86. Preston DL, Kusumi S, Tomonaga M, et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res. 1994;137:S68–97.

    Article  PubMed  CAS  Google Scholar 

  87. Darby SC, Doll R. Fallout, radiation doses near Dounreay, and childhood leukaemia. Br Med J (Clin Res Ed). 1987;294:603–7.

    Article  CAS  Google Scholar 

  88. Lubin JH, Linet MS, Boice Jr JD, et al. Case–control study of childhood acute lymphoblastic leukemia and residential radon exposure. J Natl Cancer Inst. 1998;90:294–300.

    Article  PubMed  CAS  Google Scholar 

  89. Kaletsch U, Kaatsch P, Meinert R, Schuz J, Czarwinski R, Michaelis J. Childhood cancer and residential radon exposure—results of a population-based case–control study in Lower Saxony (Germany). Radiat Environ Biophys. 1999;38:211–5.

    Article  PubMed  CAS  Google Scholar 

  90. UK Childhood Cancer Study Investigators. The United Kingdom Childhood Cancer Study of exposure to domestic sources of ionising radiation: 1: radon gas. Br J Cancer. 2002;86:1721–6.

    Article  CAS  Google Scholar 

  91. Steinbuch M, Weinberg CR, Buckley JD, Robison LL, Sandler DP. Indoor residential radon exposure and risk of childhood acute myeloid leukaemia. Br J Cancer. 1999;81:900–6.

    Article  PubMed  CAS  Google Scholar 

  92. Ahlbom A, Day N, Feychting M, et al. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 2000;83:692–8.

    Article  PubMed  CAS  Google Scholar 

  93. Boorman GA, Rafferty CN, Ward JM, Sills RC. Leukemia and lymphoma incidence in rodents exposed to low-frequency magnetic fields. Radiat Res. 2000;153:627–36.

    Article  PubMed  CAS  Google Scholar 

  94. Ma X, Buffler PA, Gunier RB, et al. Critical windows of exposure to household pesticides and risk of childhood leukemia. Environ Health Perspect. 2002;110:955–60.

    Article  PubMed  CAS  Google Scholar 

  95. Infante-Rivard C, Labuda D, Krajinovic M, Sinnett D. Risk of childhood leukemia associated with exposure to pesticides and with gene polymorphisms. Epidemiology. 1999;10:481–7.

    Article  PubMed  CAS  Google Scholar 

  96. Buckley JD, Robison LL, Swotinsky R, et al. Occupational exposures of parents of children with acute nonlymphocytic leukemia: a report from the Childrens Cancer Study Group. Cancer Res. 1989;49:4030–7.

    PubMed  CAS  Google Scholar 

  97. Freedman DM, Stewart P, Kleinerman RA, et al. Household solvent exposures and childhood acute lymphoblastic leukemia. Am J Public Health. 2001;91:564–7.

    Article  PubMed  CAS  Google Scholar 

  98. Kwan M, Block G, Selvin S, Month S, Buffler P. Food consumption by children and the risk of childhood acute leukemia. Am J Epidemiol. 2004;160:1098–107.

    Article  PubMed  Google Scholar 

  99. Liu C-Y, Hsu Y-H, Wu M-T, et al. Cured meat, vegetables, and bean-curd foods in relation to childhood acute leukemia risk: a population based case–control study. BMC Cancer. 2009;9:15.

    Article  PubMed  CAS  Google Scholar 

  100. Golding J, Greenwood R, Birmingham K, Mott M. Childhood cancer, intramuscular vitamin K, and pethidine given during labour. BMJ. 1992;305:341–6.

    Article  PubMed  CAS  Google Scholar 

  101. Roman E, Fear N, Ansell P, et al. Vitamin K and childhood cancer: analysis of individual patient data from six case–control studies. Br J Cancer. 2002;86:63–9.

    Article  PubMed  CAS  Google Scholar 

  102. Martling U, Mattsson A, Travis LB, Holm LE, Hall P. Mortality after long-term exposure to radioactive Thorotrast: a forty-year follow-up survey in Sweden. Radiat Res. 1999;151:293–9.

    Article  PubMed  CAS  Google Scholar 

  103. Andersson M, Carstensen B, Visfeldt J. Leukemia and other related hematological disorders among Danish patients exposed to Thorotrast. Radiat Res. 1993;134:224–33.

    Article  PubMed  CAS  Google Scholar 

  104. Weiss HA, Darby SC, Fearn T, Doll R. Leukemia mortality after X-ray treatment for ankylosing spondylitis. Radiat Res. 1995;142:1–11.

    Article  PubMed  CAS  Google Scholar 

  105. Inskip PD, Kleinerman RA, Stovall M, et al. Leukemia, lymphoma, and multiple myeloma after pelvic radiotherapy for benign disease. Radiat Res. 1993;135:108–24.

    Article  PubMed  CAS  Google Scholar 

  106. Griem ML, Kleinerman RA, Boice Jr JD, Stovall M, Shefner D, Lubin JH. Cancer following radiotherapy for peptic ulcer. J Natl Cancer Inst. 1994;86:842–9.

    Article  PubMed  CAS  Google Scholar 

  107. Inskip P. Second cancers following radiotherapy. In: Neugut AL, Meadows AT, editors. Multiple primary cancers. Philadelphia: Lippincott Williams & Wilkins; 1999. p. 91–135.

    Google Scholar 

  108. Leone G, Fianchi L, Pagano L, Voso MT. Incidence and susceptibility to therapy-related myeloid neoplasms. Chem Biol Interact. 2010;184:39–45.

    Article  PubMed  CAS  Google Scholar 

  109. Larson RA, Le Beau MM. Therapy-related myeloid leukaemia: a model for leukemogenesis in humans. Chem Biol Interact. 2005;153–154:187–95.

    Article  PubMed  CAS  Google Scholar 

  110. Czader M, Orazi A. Therapy-related myeloid neoplasms. Am J Clin Pathol. 2009;132:410–25.

    Article  PubMed  CAS  Google Scholar 

  111. Kaatsch P, Reinisch I, Spix C, et al. Case–control study on the therapy of childhood cancer and the occurrence of second malignant neoplasms in Germany. Cancer Causes Control. 2009;20:965–80.

    Article  PubMed  Google Scholar 

  112. Kwong Y-L. Azathioprine: association with therapy-related myelodysplastic syndrome and acute myeloid leukemia. J Rheumatol. 2010;37:485–90.

    Article  PubMed  CAS  Google Scholar 

  113. Ohara A, Kojima S, Hamajima N, et al. Myelodysplastic syndrome and acute myelogenous leukemia as a late clonal complication in children with acquired aplastic anemia. Blood. 1997;90:1009–13.

    PubMed  CAS  Google Scholar 

  114. Shivakumar R, Tan W, Wilding GE, Wang ES, Wetzler M. Biologic features and treatment outcome of secondary acute lymphoblastic leukemia–a review of 101 cases. Ann Oncol. 2008;19:1634–8.

    Article  PubMed  CAS  Google Scholar 

  115. Richardson D, Sugiyama H, Nishi N, et al. Ionizing radiation and leukemia mortality among Japanese Atomic Bomb Survivors, 1950-2000. Radiat Res. 2009;172:368–82.

    Article  PubMed  CAS  Google Scholar 

  116. Krestinina L, Preston DL, Davis FG, et al. Leukemia incidence among people exposed to chronic radiation from the contaminated Techa River, 1953–2005. Radiat Environ Biophys. 2010;49:195–201.

    Article  PubMed  CAS  Google Scholar 

  117. International Agency for Research on Cancer. IARC Monographs. Non-ionizing radiation, part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. Lyon: IARC; 2002.

    Google Scholar 

  118. Yoshinaga S, Mabuchi K, Sigurdson AJ, Doody MM, Ron E. Cancer risks among radiologists and radiologic technologists: review of epidemiologic studies. Radiology. 2004;233:313–21.

    Article  PubMed  Google Scholar 

  119. Linet MS, Freedman DM, Mohan AK, et al. Incidence of ­haematopoietic malignancies in US radiologic technologists. Occup Environ Med. 2005;62:861–7.

    Article  PubMed  CAS  Google Scholar 

  120. Cardis E, Gilbert ES, Carpenter L, et al. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res. 1995;142:117–32.

    Article  PubMed  CAS  Google Scholar 

  121. Muirhead CR, O’Hagan JA, Haylock RG, et al. Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Br J Cancer. 2009;100:206–12.

    Article  PubMed  CAS  Google Scholar 

  122. Romanenko AY, Finch SC, Hatch M, et al. The Ukrainian-American study of leukemia and related disorders among Chornobyl cleanup workers from Ukraine: III. Radiation risks. Radiat Res. 2008;170:711–20.

    Article  PubMed  CAS  Google Scholar 

  123. Shilnikova NS, Preston DL, Ron E, et al. Cancer mortality risk among workers at the Mayak nuclear complex. Radiat Res. 2003;159:787–98.

    Article  PubMed  CAS  Google Scholar 

  124. Schnatter AR, Rosamilia K, Wojcik NC. Review of the literature on benzene exposure and leukemia subtypes. Chem Biol Interact. 2005;153–154:9–21.

    Article  PubMed  CAS  Google Scholar 

  125. Khalade A, Jaakkola MS, Pukkala E, Jaakkola JJ. Exposure to benzene at work and the risk of leukemia: a systematic review and meta-analysis. Environ Health. 2010;9:31.

    Article  PubMed  CAS  Google Scholar 

  126. Hayes RB, Yin SN, Dosemeci M, et al. Benzene and the dose-related incidence of hematologic neoplasms in China. Chinese Academy of Preventive Medicine–National Cancer Institute Benzene Study Group. J Natl Cancer Inst. 1997;89:1065–71.

    Article  PubMed  CAS  Google Scholar 

  127. Ross J. Epidemiology and hereditary aspects of acute leukemia. In: Wiernick P, Goldman J, Dutcher J, Kyle R, editors. Neoplastic diseases of the blood. Cambridge: Cambridge University Press; 2006. p. 164–75.

    Google Scholar 

  128. Richardson S, Zittoun R, Bastuji-Garin S, et al. Occupational risk factors for acute leukaemia: a case–control study. Int J Epidemiol. 1992;21:1063–73.

    Article  PubMed  CAS  Google Scholar 

  129. Sinner PJ, Cerhan JR, Folsom AR, Ross JA. Positive association of farm or rural residence with acute myeloid leukemia incidence in a cohort of older women. Cancer Epidemiol Biomarkers Prev. 2005;14:2446–8.

    Article  PubMed  Google Scholar 

  130. Brownson R, Novotny T, Perry M. Cigarette smoking and adult leukemia. A meta-analysis. Arch Intern Med. 1993;153:469–75.

    Article  PubMed  CAS  Google Scholar 

  131. Ma X, Park Y, Mayne S, et al. Diet, lifestyle, and acute myeloid leukemia in the NIH-AARP Cohort. Am J Epidemiol. 2010;171:312–22.

    Article  PubMed  Google Scholar 

  132. Correa A, Mohan A, Jackson L, Perry H, Helzlsouer K. Use of hair dyes, hematopoietic neoplasms, and lymphomas: a literature review. I. Leukemias and myelodysplastic syndromes. Cancer Invest. 2000;18:408.

    Article  Google Scholar 

  133. Rauscher G, Shore D, Sandler D. Hair dye use and risk of adult acute leukemia. Am J Epidemiol. 2004;160:19–25.

    Article  PubMed  Google Scholar 

  134. Larsson S, Wolk A. Overweight and obesity and incidence of leukemia: a meta-analysis of cohort studies. Int J Cancer. 2008;122:1418–21.

    Article  PubMed  CAS  Google Scholar 

  135. Li Y, Moysich K, Baer M, et al. Intakes of selected food groups and beverages and adult acute myeloid leukemia. Leuk Res. 2006;30:1507–15.

    Article  PubMed  Google Scholar 

  136. Zhang M, Zhao K, Zhang X, Holman C. Possible protective effect of green tea intake on risk of adult leukemia. Br J Cancer. 2008;98:168–70.

    Article  PubMed  CAS  Google Scholar 

  137. Kasim K, Levallois P, Abdous B, Auger P, Johnson K. Lifestyle factors and the risk of adult leukemia in Canada. Cancer Causes Control. 2005;16:489–500.

    Article  PubMed  Google Scholar 

  138. Gorini G, Stagnaro E, Fontana V, et al. Alcohol consumption and risk of leukemia: a multicenter case–control study. Leuk Res. 2007;31:379–86.

    Article  PubMed  CAS  Google Scholar 

  139. Klatsky A, Li Y, Baer D, Armstrong M, Udaltsova N, Friedman G. Alcohol consumption and risk of hematologic malignancies. Ann Epidemiol. 2009;19:746–53.

    Article  PubMed  Google Scholar 

  140. Owen C, Barnett M, Fitzgibbon J. Familial myelodysplasia and acute myeloid leukaemia–a review. Br J Haematol. 2008;140:123–32.

    Article  PubMed  CAS  Google Scholar 

  141. Couto E, Chen B, Hemminki K. Association of childhood acute lymphoblastic leukaemia with cancers in family members. Br J Cancer. 2005;93:1307–9.

    Article  PubMed  CAS  Google Scholar 

  142. Rommens J, Durie P. Shwachman-Diamond syndrome. In: Pagon R, Bird T, Dolan C, Stephens K, editors. GeneReviews [Internet]. Seattle, WA: University of Washington; 2008.

    Google Scholar 

  143. Alter BP, Giri N, Savage SA, et al. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 2010;150:179–88.

    PubMed  Google Scholar 

  144. Federman N, Sakamoto KM. The genetic basis of bone marrow failure syndromes in children. Mol Genet Metab. 2005;86:100–9.

    Article  PubMed  CAS  Google Scholar 

  145. Varley J, Evans D, Birch J. Li-Fraumeni syndrome–a molecular and clinical review. Br J Cancer. 1997;76:1–14.

    Article  PubMed  CAS  Google Scholar 

  146. German J. Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet. 1997;93:100–6.

    Article  PubMed  CAS  Google Scholar 

  147. Olsen JH, Hahnemann JM, Borresen-Dale AL, et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the nordic countries. J Natl Cancer Inst. 2001;93:121–7.

    Article  PubMed  CAS  Google Scholar 

  148. Gelb BD, Tartaglia M. Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Hum Mol Genet. 2006;15 Spec No 2:R220–6.

    Google Scholar 

  149. Yohay K. Neurofibromatosis type 1 and associated malignancies. Curr Neurol Neurosci Rep. 2009;9:247–53.

    Article  PubMed  CAS  Google Scholar 

  150. Bjørge T, Cnattingius S, Lie RT, Tretli S, Engeland A. Cancer risk in children with birth defects and in their families: a population based cohort study of 5.2 million children from Norway and Sweden. Cancer Epidemiol Biomarkers Prev. 2008;17:500–6.

    Article  PubMed  Google Scholar 

  151. Xavier AC, Taub JW. Acute leukemia in children with Down syndrome. Haematologica. 2010;95:1043–5.

    Article  PubMed  CAS  Google Scholar 

  152. Bolufer P, Barragan E, Collado M, Cervera J, López J-A, Sanz MA. Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res. 2006;30:1471–91.

    Article  PubMed  CAS  Google Scholar 

  153. Vijayakrishnan J, Houlston R. Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica. 2010;95:1405–14.

    Article  PubMed  CAS  Google Scholar 

  154. Trevino LR, Yang W, French D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009;41:1001–5.

    Article  PubMed  CAS  Google Scholar 

  155. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 2009;41:1006–10.

    Article  PubMed  CAS  Google Scholar 

  156. Han S, Lee K-M, Park SK, et al. Genome-wide association study of childhood acute lymphoblastic leukemia in Korea. Leuk Res. 2010;34(10):1271–4.

    Article  PubMed  CAS  Google Scholar 

  157. Sherborne AL, Hosking FJ, Prasad RB, et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet. 2010;42:492–4.

    Article  PubMed  CAS  Google Scholar 

  158. Knight JA, Skol AD, Shinde A, et al. Genome-wide association study to identify novel loci associated with therapy-related myeloid leukemia susceptibility. Blood. 2009;113:5575–82.

    PubMed  CAS  Google Scholar 

  159. Mrózek K, Heinonen K, Bloomfield CD. Clinical importance of cytogenetics in acute myeloid leukaemia. Best Pract Res Clin Haematol. 2001;14:19–47.

    Article  PubMed  CAS  Google Scholar 

  160. Manola KN. Cytogenetics of pediatric acute myeloid leukemia. Eur J Haematol. 2009;83:391–405.

    Article  PubMed  CAS  Google Scholar 

  161. Vrooman LM, Silverman LB. Childhood acute lymphoblastic ­leukemia: update on prognostic factors. Curr Opin Pediatr. 2009;21:1–8.

    Article  PubMed  Google Scholar 

  162. Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2008;22:240–8.

    Article  PubMed  CAS  Google Scholar 

  163. Qian Z, Joslin JM, Tennant TR, et al. Cytogenetic and genetic pathways in therapy-related acute myeloid leukemia. Chem Biol Interact. 2010;184:50–7.

    Article  PubMed  CAS  Google Scholar 

  164. Taylor JA, Sandler DP, Bloomfield CD, et al. Ras oncogene activation and occupational exposures in acute myeloid leukemia. J Natl Cancer Inst. 1992;84:1626–32.

    Article  PubMed  CAS  Google Scholar 

  165. Barletta E, Gorini G, Vineis P, et al. Ras gene mutations in patients with acute myeloid leukaemia and exposure to chemical agents. Carcinogenesis. 2004;25:749–55.

    Article  PubMed  CAS  Google Scholar 

  166. Alexander FE, Patheal SL, Biondi A, et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res. 2001;61:2542–6.

    PubMed  CAS  Google Scholar 

  167. Wiemels JL, Xiao Z, Buffler PA, et al. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood. 2002;99:3801–5.

    Article  PubMed  CAS  Google Scholar 

  168. Lafiura KM, Bielawski DM, Posecion Jr NC, et al. Association between prenatal pesticide exposures and the generation of leukemia-associated T(8;21). Pediatr Blood Cancer. 2007;49:624–8.

    Article  PubMed  Google Scholar 

  169. Wiemels JL, Leonard BC, Wang Y, et al. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2002;99:15101–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha S. Linet M.D., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Linet, M.S., Dores, G.M., Kim, C.J., Devesa, S.S., Morton, L.M. (2013). Epidemiology and Hereditary Aspects of Acute Leukemia. In: Wiernik, P., Goldman, J., Dutcher, J., Kyle, R. (eds) Neoplastic Diseases of the Blood. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3764-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3764-2_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3763-5

  • Online ISBN: 978-1-4614-3764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics