Skip to main content

Low Frequency Modes in Inhomogeneous Magnetic Fields

  • Chapter
  • First Online:
Stability and Transport in Magnetic Confinement Systems

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 71))

  • 976 Accesses

Abstract

We have now seen how some typical low frequency modes can be driven unstable by density, pressure or current gradients in simple geometries. A more accurate description of collective modes in magnetic confinement systems, in general, requires more detailed geometry effects as well as separate effects of density and temperature gradients [1–197]. In the present chapter we will aim at making the geometrical description more accurate, thus in most cases leading to eigenvalue problems for the modes concerned. We will also derive a more complete drift kinetic description, introduce the gyrokinetic equation and present an advanced fluid model. We will furthermore review briefly the fields of transport due to magnetic fluctuations and advanced fluid models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.I. Rudakov and R.Z. Sagdeev Sov. Phys. Doklady 6, 415 (1961).

    MathSciNet  ADS  Google Scholar 

  2. N. A. Krall and M.N. Rosenbluth, Phys. Fluids 5, 1435 (1962).

    ADS  Google Scholar 

  3. R.M. Kulsrud, Phys. Fluids 6, 904 (1963).

    ADS  Google Scholar 

  4. H. P. Furth, J. Killeen, M.N. Rosenbluth Phys. Fluids 4, 459 (1963).

    ADS  Google Scholar 

  5. N.A. Krall andM.N. Rosenbluth Phys. Fluids 8, 1488 (1965)

    Google Scholar 

  6. B. B. Kadomtsev, Plasma Turbulence, Academic Press, New york 1965.

    Google Scholar 

  7. B. Coppi, G. Laval, R. Pellat and M.N. Rosenbluth, Nuclear Fusion 6, 261 (1966).

    Google Scholar 

  8. M.N. Rosenbluth, R.Z. Zagdeev, J.B. Taylor and G.M. Zaslavsky, Nuclear Fusion 6, 297 (1966).

    Google Scholar 

  9. C.S. Liu, Phys. Fluids 12, 1489 (1969).

    ADS  MATH  Google Scholar 

  10. B. B. Kadomtsev and O.P. Pogutse, Soviet Physics Doklady 14, 470 (1969).

    ADS  Google Scholar 

  11. P.H. Rutherford and E.A. Frieman, Phys. Fluids 11, 569 (1968).

    ADS  Google Scholar 

  12. L.D. Pearlstein and H.L. Berk, Phys. Rev. Lett. 23, 220 (1969).

    ADS  Google Scholar 

  13. B.B. Kadomtsev and O.P. Pogutse, in Reviews of Plasma Physics (Ed. M.A. Leontovitch) Consultant Bureau, New York, Vol. 5, p. 249 (1970).

    Google Scholar 

  14. B.B. Kadomtsev and O.P. Pogutse, Nuclear Fusion 11, 67 (1971).

    Google Scholar 

  15. M.N. Rosenbluth and M.N. Sloan, Phys. Fluids 14, 1725 (1971).

    ADS  Google Scholar 

  16. E.A. Frieman, Phys. Fluids 13, 490 (1970).

    ADS  Google Scholar 

  17. P.J. Catto, A.M. El Nadi, C.S. Liu and M.N. Rosenbluth, Nuclear Fusion 14, 405 (1974).

    Google Scholar 

  18. S. Yoshikawa and M. Okabayashi, Phys. Fluids 17, 1762 (1974).

    ADS  Google Scholar 

  19. B. Coppi and Rewoldt, Phys. Rev. Lett. 22, 1329 (1974).

    ADS  Google Scholar 

  20. D.A. D\’Ippolito and R.C. Davidson, Phys. Fluids 18, 1507 (1975).

    Google Scholar 

  21. V.A. Rozhanskii, JETP Lett. 34, 56 (1981).

    ADS  Google Scholar 

  22. M.N. Rosenbluth and W.M. Tang, Phys. Fluids 19, 1040 (1976).

    ADS  Google Scholar 

  23. J.C. Adam, W.M. Tang and P.H. Rutherford, Phys. Fluids 19, 1561 (1976).

    Google Scholar 

  24. D.W. Ross, W.M. Tang and J.C. Adam, Phys. Fluids 20, 613 (1977).

    ADS  Google Scholar 

  25. T. Hatori, Y.C. Lee and T. Tange, J. Phys. Soc. Japan 43, 655 (1977).

    ADS  Google Scholar 

  26. J.B. Taylor in Plasma Physics and Controlled Nuclear Fusion Research IAEA, Vienna 1977, Vol. 2, p. 323.

    Google Scholar 

  27. G. Hasselberg, A. Rogister and A. El-Nadi, Phys. Fluids 20, 982 (1977).

    ADS  Google Scholar 

  28. B. Coppi and F. Pegoraro, Nuclear Fusion 17, 969 (1977).

    ADS  Google Scholar 

  29. B. Coppi, Phys. Rev. Lett. 39, 939 (1977).

    ADS  Google Scholar 

  30. D. Dobrott, D.B. Nelson, J.M. Greene, A.H. Glasser, M.S. Chance and E.A. Frieman, Phys. Rev. Lett. 39, 943 (1977).

    ADS  Google Scholar 

  31. M. Gaudreau, A., Gondhalekar, M.H. Hughes et. al., Phys. Rev. Lett 39, 1266 (1977).

    ADS  Google Scholar 

  32. J.G. Cordey and R.J. Hastie, Nuclear Fusion 17, 523 (1977).

    ADS  Google Scholar 

  33. L. Chen, J. Hsu, P.K. Kaw and P.H. Rutherford, Nuclear Fusion 18, 137 (1978).

    Google Scholar 

  34. J.D. Callen, Phys. Rev. Lett. 39, 1540 (1977).

    ADS  Google Scholar 

  35. T.M. Antonsen, Jr., Phys. Rev. Lett. 41, 33 (1978).

    ADS  Google Scholar 

  36. W.M. Tang, Nuclear Fusion 18, 1089 (1978).

    ADS  Google Scholar 

  37. A.B. Mikhailovskii, Sov. J. Plasma Physics 4, 683 (1978).

    Google Scholar 

  38. J.A. Wesson, Nuclear Fusion 18, 87 (1978).

    ADS  Google Scholar 

  39. J.W. Connor, R.J. Hastie and J.B. Taylor, Phys. Rev. Lett. 40, 396 (1978).

    MathSciNet  ADS  Google Scholar 

  40. D. Lortz and J. Nührenberg, Phys. Rev. Lett. 68A, 49 (1978).

    ADS  Google Scholar 

  41. A.B. Rechester and M.N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978).

    ADS  Google Scholar 

  42. J.W. Connor, R.J. Hastie and J.B. Taylor, Proc. Royal Soc. London A365 (1979).

    Google Scholar 

  43. B. Coppi, J. Filreis and F. Pegoraro, Ann. Phys. 121, 1 (1979).

    ADS  Google Scholar 

  44. B. Coppi, A. Ferreira, J.W.K. Mark and J.J. Ramos, Nuclear Fusion 19, 715 (1979).

    ADS  Google Scholar 

  45. C. Mercier in Plasma Physics and Controlled Nuclear Fusion Research (Proc. 7th Int. Conf. Innsbruck 1978) Vol. I IAEA, Vienna p. 701 (1979).

    Google Scholar 

  46. H.R. Strauss, Phys. Fluids 22, 1079 (1979).

    ADS  MATH  Google Scholar 

  47. D.W. Ross, Phys. Fluids 22, 1215 (1979).

    ADS  Google Scholar 

  48. D.W. Ross and S.M. Mahajan, Phys. Fluids 22, 294 (1979).

    ADS  Google Scholar 

  49. N.T. Gladd and C.S. Liu, Phys. Fluids 22, 1289 (1979).

    ADS  MATH  Google Scholar 

  50. P.J. Catto, M.N. Rosenbluth and K.T. Tsang, Phys. Fluids 22, 1284 (1979).

    ADS  MATH  Google Scholar 

  51. C. Chu, M.S. Chu and T. Ohkawa, Phys. Rev. Lett. 41, 653 (1978).

    ADS  Google Scholar 

  52. W.M. Manheimer and T.M. Antonsen Jr, Phys. Fluids 22, 957 (1979).

    ADS  Google Scholar 

  53. T.M. Antonsen and B. Lane, Phys. Fluids 23, 1205 (1980).

    MathSciNet  ADS  MATH  Google Scholar 

  54. H. Sanuki, T. Watanabe and M. Watanabe, Phys. Fluids 23, 158 (1980).

    ADS  MATH  Google Scholar 

  55. L. Chen and C.Z. Cheng, Phys. Fluids 23, 356 (1980).

    MathSciNet  ADS  Google Scholar 

  56. W.M. Tang, J.W. Connor and R.J. Hastie, Nuclear Fusion 20, 1439 (1980).

    ADS  Google Scholar 

  57. J.F. Drake, N.T. Gladd, C.S. Liu and C.L. Chang, Phys. Rev. Lett. 44, 994 (1980).

    ADS  Google Scholar 

  58. N.T. Gladd, J.F. Drake, C.L. Chang and C.S. Liu, Phys. Fluids 23, 1182 (1980).

    ADS  MATH  Google Scholar 

  59. M.N. Rosenbluth, Phys. Rev. Lett. 46, 1525 (1981).

    ADS  Google Scholar 

  60. J.P. Mondt, Phys. Fluids 24, 1279 (1981).

    ADS  MATH  Google Scholar 

  61. W. Horton, D.I. Choi and W.M. Tang, Phys. Fluids 24, 1077 (1981).

    ADS  MATH  Google Scholar 

  62. C.Z. Cheng and K.T. Tsang, Nuclear Fusion 21, 643 (1981).

    Google Scholar 

  63. H.D. Hazeltine, D.A. Hitchcock and S.M. Mahajan, Phys. Fluids 4, 180 (1981).

    ADS  Google Scholar 

  64. R.L. Dewar, J. Manickam, R.C. Grimm and M.S. Chance, Nuclear Fusion 21, 493 (1981).

    ADS  Google Scholar 

  65. J.M. Greene and M.S. Chance, Nuclear Fusion 21, 453 (1981).

    ADS  Google Scholar 

  66. T.M. Antonsen, Jr., A. Fereira and J.J. Ramos, Plasma Physics 24, 197 (1982).

    ADS  Google Scholar 

  67. F. Wagner, G. Becker, K. Behringer et. al, Phys. Rev. Lett. 53, 1453 (1982).

    ADS  Google Scholar 

  68. J. Weiland and J.P. Mondt, Phys. Rev. Lett. 48, 23 (1982).

    ADS  Google Scholar 

  69. K. Itoh, S. Inoue-Itoh, S. Tokuda and T. Tuda, Nuclear Fusion 22, 1031 (1982).

    Google Scholar 

  70. C.Z. Cheng, Phys. Fluids 25, 1020 (1982).

    ADS  MATH  Google Scholar 

  71. P. Andersson and J. Weiland, Phys. Rev. A27, 1556 (1983).

    ADS  Google Scholar 

  72. M.N. Rosenbluth, S.T. Tsai, J.W. van Dam and M.G. Engquist, Phys. Rev. Lett. 51, 1967 (1983).

    ADS  Google Scholar 

  73. G. Hasselberg and A. Rogister, Nuclear Fusion 23, 1351 (1983).

    Google Scholar 

  74. P.N. Guzdar, Liu Chen, W.M. Tang and P.H. Rutherford, Phys. Fluids 26, 673 (1983).

    ADS  MATH  Google Scholar 

  75. M. Greenwald, D. Gwinn, S. Milora et. al., Phys. Rev. Lett. 53, 352 (1984).

    ADS  Google Scholar 

  76. L. Chen, R.B. White and M.N. Rosenbluth, Phys. Rev. Lett. 52, 1122 (1984).

    ADS  Google Scholar 

  77. R.B. White, L. Chen, F. Romanelli and R. Hay, Phys. Fluids 18, 278 (1985).

    ADS  Google Scholar 

  78. J. Weiland and L. Chen, Phys. Fluids 28, 1359 (1985).

    ADS  MATH  Google Scholar 

  79. J.P. Freidberg and J.A. Wesson, Nuclear Fusion 25, 759 (1985).

    Google Scholar 

  80. R.C. Grimm, M.S. Chance, A.M.M. Todd, J. Manickam, M. Okabayashi, W.M. Tang, R.L. Dewar, H. Fishman, S.L. Mendelsohn, D.A. Monticello, M.W. Phillips and M. Reusch, Nuclear Fusion 25, 805 (1985).

    Google Scholar 

  81. P. Andersson and J. Weiland, Nuclear Fusion 25, 1761 (1985).

    Google Scholar 

  82. P.C. Liewer, Nuclear Fusion 25, 543 (1985).

    Google Scholar 

  83. R.R. Dominguez and R.R. Moore, Nuclear Fusion 26, 85 (1986).

    Google Scholar 

  84. P. Andersson and J. Weiland, Phys. Fluids 29, 1744 (1986).

    ADS  MATH  Google Scholar 

  85. A. Rogister, G. Hasselberg, A. Kaleck, A. Boileau, H.W.H. Van Andel and M. von Hellerman, Nuclear Fusion 26, 797 (1986).

    Google Scholar 

  86. F. Romanelli, W.M. Tang and R.B. White, Nuclear Fusion 26, 1515 (1986).

    Google Scholar 

  87. R.R. Dominguez and R.E. Waltz, Nuclear Fusion 27, 65 (1987).

    Google Scholar 

  88. A.A. Thoul, P.L. Similon and R.N. Sudan, Phys. Rev. Lett. 59, 1448 (1987).

    ADS  Google Scholar 

  89. W.M. Tang, G. Rewoldt and L. Chen, Phys. Fluids 29, 3715 (1986).

    ADS  Google Scholar 

  90. P. Andersson and J. Weiland, Phys. Fluids 31, 359 (1988).

    ADS  MATH  Google Scholar 

  91. A. Jarmén, P. Andersson and J. Weiland, Nuclear Fusion 27, 941 (1987).

    Google Scholar 

  92. P. Andersson, A fully toroidal fluid analysis of electrostatic ballooning modes including trapped electrons, Preprint CTH-IEFT/PP-1986-17, Chalmers University of Technology (1986).

    Google Scholar 

  93. J. Weiland and H. Nordman, Proc. Varenna-Lausanne workshop “Theory of Fusion Plasmas”, Chexbres 1988, p. 451 (1988).

    Google Scholar 

  94. H. Nordman and J. Weiland, Proc. Varenna-Lausanne workshop “Theory of Fusion Plasmas”, Chexbres 1988, p. 459 (1988).

    Google Scholar 

  95. J. Weiland, Comments Plasma Phys. Controlled Fusion 12, 45 (1988).

    Google Scholar 

  96. A. Rogister, G. Hasselberg, F. Waelbroeck and J. Weiland, Nuclear Fusion 28, 1053 (1988).

    Google Scholar 

  97. W. Horton, B.G. Hong and W.M. Tang, Phys. Fluids 31, 2971 (1988).

    ADS  MATH  Google Scholar 

  98. R. Dominguez and R. Waltz, Phys. Fluids 31, 3147 (1988).

    ADS  Google Scholar 

  99. B. Coppi, Phys. Lett. A128, 193 (1988).

    ADS  Google Scholar 

  100. F. Romanelli, Phys. Fluids B1, 1018 (1989).

    ADS  Google Scholar 

  101. H. Nordman and J. Weiland, Nuclear Fusion 29, 251 (1989).

    Google Scholar 

  102. J. Weiland, A. Jarmén and H. Nordman, Nuclear Fusion 29, 1810 (1989).

    Google Scholar 

  103. H. Biglari, P.H. Diamond and M.N. Rosenbluth, Phys. Fluids B1, 109 (1989).

    ADS  Google Scholar 

  104. B.G. Hong, W. Horton and D.I. Choi, Phys. Fluids B1, 1589 (1989).

    ADS  Google Scholar 

  105. S. Hamaguchi and W. Horton, Phys. Fluids 2, 1833 (1990).

    Google Scholar 

  106. R.D. Stambaugh, S.M. Wolfe, R.J. Hawryluk et. al., Phys. Fluids B2, 2941 (1990).

    ADS  Google Scholar 

  107. G. Rewoldt and W.M. Tang, Phys. Fluids B2, 318 (1990).

    ADS  Google Scholar 

  108. J. Nilsson, M. Liljeström and J. Weiland, Phys. Fluids B2, 2568 (1990); CTH- IEFT/PP-1998-14, Chalmers University of Technology 1988.

    Google Scholar 

  109. H. Nordman and J. Weiland and A. Jarmén, Nuclear Fusion 30, 983 (1990).

    Google Scholar 

  110. S.D. Scott, P.H. Diamond, R.J. Fonck et. al., Phys. Rev. Lett. 64, 531 (1990).

    ADS  Google Scholar 

  111. F. Romanelli and S. Briguglio, Phys. Fluids B2, 754 (1990).

    ADS  Google Scholar 

  112. P.W. Terry and P.H. Diamond, Phys. Fluids B2, 1128 (1990).

    ADS  Google Scholar 

  113. O.T. Kingsbury and R.E. Waltz, Phys. Fluids B3, 3539 (1991).

    ADS  Google Scholar 

  114. J. Weiland and H. Nordman, Nuclear Fusion 31, 390 (1991).

    Google Scholar 

  115. P.K. Shukla and J. Weiland, Phys. Lett. A 137, 132 (1989).

    ADS  Google Scholar 

  116. G.W. Hammet and F.W. Perkins, Phys. Rev. Lett. 64, 3019 (1990).

    ADS  Google Scholar 

  117. G.W. Hammet, W. Dorland and F.W. Perkins, Phys. Fluids B4, 2052 (1992).

    ADS  Google Scholar 

  118. S.C. Cowley, R.M. Kulsrud and R. Sudan, Phys. Fluids B3, 2767 (1991).

    ADS  Google Scholar 

  119. X. Garbet, F. Mourges and A. Samain, Plasma Phys. Control. Fusion 32, 917 (1990).

    ADS  Google Scholar 

  120. B.B. Kadomtsev, Nuclear Fusion 31, 1301 (1991).

    Google Scholar 

  121. J. Weiland and A. Hirose, Nuclear Fusion 32, 151 (1992).

    ADS  Google Scholar 

  122. J. Weiland, Phys. Fluids B4, 1388 (1992).

    ADS  Google Scholar 

  123. J.P. Christiansen et. al., Plasma Phys. Control. Fusion 34, 1881 (1992).

    ADS  Google Scholar 

  124. K. Itoh, S.-I. Itoh and A. Fukuyama, Phys. Rev. Lett. 69, 1050 (1992).

    ADS  Google Scholar 

  125. A.J. Wootton, H.Y.W. Tsui and S. Prager, Plasma Phys. Control. Fusion 44, 2023 (1992).

    ADS  Google Scholar 

  126. M.A. Dubois, R. Sabot, B. Pegouriee, H-W. Drawn and A. Geraud, Nuclear Fusion 32, 1935 (1992).

    ADS  Google Scholar 

  127. A.B. Mikhailowskii, Electromagnetic Instabilities in an Inhomogeneous Plasma, (ed E.W. Laing), Institute of Physics Publishing, Bristol 1992.

    Google Scholar 

  128. T.C. Luce, C.C. Petty and J.C.M. de Haas, Phys. Rev. Lett. 68, 52 (1992).

    ADS  Google Scholar 

  129. J. Weiland and H. Nordman, Phys. Fluids B5, 1669 (1993).

    ADS  Google Scholar 

  130. A. Heikkilä and J. Weiland, Phys. Fluids B5, 2043 (1993).

    ADS  Google Scholar 

  131. S.C. Guo and F. Romanelli, Phys. Fluids B5, 520 (1993).

    ADS  Google Scholar 

  132. A. Hirose, Phys. Fluids 5, 230 (1993).

    Google Scholar 

  133. H. Nordman and J. Weiland, Phys. Fluids B5, 1032 (1993).

    ADS  Google Scholar 

  134. M. Fröjdh, M. Liljeström and H. Nordman, Nuclear Fusion 32, 419 (1992).

    ADS  Google Scholar 

  135. A. Jarmén and M. Fröjdh, Phys. Fluids B5, 4015 (1993).

    ADS  Google Scholar 

  136. A.B. Hassam and Y.C. Lee, Phys. Fluids 27, 438 (1984).

    ADS  MATH  Google Scholar 

  137. J.P. Mondt and J. Weiland, Phys. Fluids B3, 3248 (1991); Phys. Plasmas 1, 1096 (1994).

    Google Scholar 

  138. J. Nilsson and J. Weiland, Nuclear Fusion 34, 803 (1994).

    ADS  Google Scholar 

  139. S.C. Guo and F. Romanelli, Phys. Plasmas 1, 1101 (1994).

    ADS  Google Scholar 

  140. J.Q. Dong, W. Horton and J.Y. Kim, Phys. Fluids B4, 1867 (1992).

    ADS  Google Scholar 

  141. J.D. Callen, Phys. Fluids B4, 2142 (1992).

    ADS  Google Scholar 

  142. R.E. Waltz, R.R. Dominguez and G.W. Hammett, Phys. Fluids B4, 3138 (1992).

    ADS  Google Scholar 

  143. D.D. Hua, X.Q. Xu and T.K. Fowler, Phys. Fluids B4, 3216 (1992).

    ADS  Google Scholar 

  144. J.W. Connor and H.R. Wilson, Plasma Phys. Control. Fusion 36, 719 (1994).

    ADS  Google Scholar 

  145. J. W. Connor, J. B. Taylor and H.R. Wilson, Phys. Rev. Lett. 70, 1803 (1993).

    ADS  Google Scholar 

  146. W. M. Tang, G. Rewoldt, Phys. Fluids 5, 2451 (1993).

    Google Scholar 

  147. F. Romanelli and F. Zonca, Phys. Fluids 5, 4081 (1993).

    Google Scholar 

  148. A. Hirose, Phys. Fluids B5, 230 (1993).

    ADS  Google Scholar 

  149. T. Davydova, D. Jovanovic, J. Vranges and J. Weiland, Phys. Plasmas 1, 809 (1994).

    ADS  Google Scholar 

  150. A. Hirose, L. Zhang and M. Elia, Phys. Rev. Lett. 72, 3993 (1994).

    ADS  Google Scholar 

  151. F. Wagner and U. Stroth, Plasma Phys. Control. Fusion 35, 1321 (1993).

    ADS  Google Scholar 

  152. B.A. Carreras, Plasma Phys. Control. Fusion, 1825 (1991).

    Google Scholar 

  153. J. Weiland, Current topics in the Physics of Fluids 1, 439, (1994), Research trends, Trivandrum 1994.

    Google Scholar 

  154. S.E. Parker, W. Dorland, R.A. Santoro, M.A. Beer, Q.P. Liu, W.W. Lee and G.W. Hammett, Phys. Plasmas 1, 1461 (1994).

    ADS  Google Scholar 

  155. R.E. Waltz, G.D. Kerbel and J. Milovich, Phys. Plasmas 1, 2229 (1994).

    ADS  Google Scholar 

  156. J. Nilsson and J. Weiland, Nuclear Fusion 35, 497 (1995).

    ADS  Google Scholar 

  157. M. Kotschenreuther, W. Dorland, M.A. Beer and G.W. Hammet, Phys. Plasmas 2, 2381 (1995).

    ADS  Google Scholar 

  158. H. Nordman, A. Jarmén, P. Malinov and M. Persson, Phys. Plasmas {2}, 3440 (1995).

    Google Scholar 

  159. S.V. Novakovskii, P.N. Guzdar, J.F. Drake, C.S. Liu and F. Waelbroeck, Phys. Plasmas 2, 781 (1995).

    ADS  Google Scholar 

  160. J. Kinsey, G. Bateman, A. Kritz and A. Redd, Phys. Plasmas 3, 3334 (1996).

    ADS  Google Scholar 

  161. M.G. Haines, Plasma Phys. Control. Fusion 38, 897 (1996).

    ADS  Google Scholar 

  162. M. Persson, J.L.V. Levandovski and H. Nordman, Phys. Plasmas 3, 3720 (1996).

    ADS  Google Scholar 

  163. R.E. Waltz, G.M. Staebler, W. Dorland, G.W. Hammett, M. Kotschenreuther and J.A. Konings, Phys. Plasmas 4, 2482 (1997).

    ADS  Google Scholar 

  164. Nathan Mattor and Scott E. Parker, Phys. Rev. Lett. 79, 3419 (1997).

    ADS  Google Scholar 

  165. H. Nordman, P. Strand, J. Weiland and J.P. Christiansen, Nuclear Fusion 37, 413 (1997).

    ADS  Google Scholar 

  166. S.C. Guo and J. Weiland, Nuclear Fusion 37, 1095 (1997).

    ADS  Google Scholar 

  167. B.A. Carreras, IEEE Trans. Plasma Sci. 25, 1281 (1997).

    ADS  Google Scholar 

  168. J.P. Mondt, Phys. Plasmas 3, 939 (1996).

    ADS  Google Scholar 

  169. A. Bondeson, M. Benda, M. Persson and M.S. Chu, Nuclear Fusion 37, 1419 (1997).

    ADS  Google Scholar 

  170. A. Zagorodny, J. Weiland and A. Jarm\’{e}n, Comments Plasma Phys. Controlled Fusion 17, 353 (1997).

    Google Scholar 

  171. H. Nordman, P. Strand, J. Weiland and J.P. Christiansen, Nuclear Fusion 37, 413 (1997).

    ADS  Google Scholar 

  172. R. Singh, H. Nordman, J. Anderson and J. Weiland, Phys. Plasmas 5, 3669 (1998).

    ADS  Google Scholar 

  173. R.E. Waltz, R.L. Dewar and X. Garbet, Phys. Plasmas 5, 1784 (1998).

    ADS  Google Scholar 

  174. G. Bateman, A.H. Kritz, J.E. Kinsey, A.J. Redd and J. Weiland, Phys. Plasmas 5, 1793 (1998).

    ADS  Google Scholar 

  175. G. Bateman, A.H. Kritz, J.E. Kinsey and A.J. Redd, Phys. Plasmas 5, 2355 (1998).

    ADS  Google Scholar 

  176. P.Strand, H. Nordman, J. Weiland and J.P. Christiansen, Nuclear Fusion 38, 545 (1998).

    ADS  Google Scholar 

  177. J. Weiland, H. Nordman and R. Singh, Resistive Edge Modes, A scenario for L-H transition due to heat flux, IAEA-CN-69/THP2/09, Yokohama 1998.

    Google Scholar 

  178. A. Zagorodny and J. Weiland, Ukrainian J. Physics 43, 1402 (1998).

    Google Scholar 

  179. T.A. Davydova and J. Weiland, Phys. Plasmas 5, 3089 (1998).

    ADS  Google Scholar 

  180. J.P. Christiansen and J.G. Cordey, Nuclear Fusion 38, 1757 (1998).

    ADS  Google Scholar 

  181. M.N. Rosenbluth and F.L. Hinton, Phys. Rev. Lett. 80, 724 (1988).

    ADS  Google Scholar 

  182. D.R. Mikkelsen, G. Bateman, D. Boucher et. al. Proc. Sixteenth IAEA Fusion Energy Conference, Yokohama 1998 (IAEA, Vienna 1999) Paper IAEA-CN-69/ITER P1/08.

    Google Scholar 

  183. M.N. Rosenbluth, “Physics fundamentals for ITER”, Invited paper, EPS conference Prague 1998, Plasma Phys. and Control. Fusion 41, A99 (1999).

    ADS  Google Scholar 

  184. A. Jarmén, P. Malinov and H. Nordman, Plasma Phys. Control. Fusion 40, 2041 (1998).

    ADS  Google Scholar 

  185. R. Singh and J. Weiland, Phys. Plasmas 6, 1397, (1999).

    ADS  Google Scholar 

  186. A. Zagorodny and J. Weiland, Phys. Plasmas 6, 2359 (1999).

    MathSciNet  ADS  Google Scholar 

  187. A.J. Redd, A.H. Kritz, G. Bateman, G. Rewoldt, and W.M. Tang, Phys. Plasmas 6, 1162 (1999).

    ADS  Google Scholar 

  188. J.E. Kinsey, R.E. Waltz, and J.C. De Boo, Phys. Plasmas 6, 1865 (1999).

    ADS  Google Scholar 

  189. A.M. Dimits, G. Bateman, M.A. Beer, B.J. Cohen, W. Dorland, G.W. Hammett. C. Kim, J.E. Kinsey, M. Kotschenreuther, A.H. Kritz, L.L. Lao, J. Mandrekas, W.M. Nevins, S.E. Parker,A.J. Redd, D.E. Shumaker,R. Sydora and J. Weiland, Comparisons and Physics Basis of Tokamak Transport Models and Turbulence Simulations, Lawrence Livermore Nat. Lab. Report UCRL-JC-135376 (1999), Phys. Plasmas 7, 969 (2000).

    Google Scholar 

  190. I. Holod, J. Weiland and A. Zagorodny, Nonlinear Fluid Closure; Three mode slab ion temperature gradient problem with diffusion, Phys. Plasmas 9, 1217 (2002).

    ADS  Google Scholar 

  191. J. Weiland, Analytical eigenvalue solution for η i modes of general modewidth, Phys. Plasmas 11, 3238 (2004).

    ADS  Google Scholar 

  192. F.D.Halpern, A. Eriksson, G. Bateman, A.H. Kritz, A. Pankin, C.M. Wolfe and J. Weiland, Improved model for transport driven by drift modes in tokamaks, Phys Plasmas 15, 012304 (2008).

    ADS  Google Scholar 

  193. Anatol Zagorodny and Jan Weiland, Non-Markovian Effects in Turbulent Diffusion in Magnetized Plasmas. Proc. From Leonardo to ITER: Nonlinear and Coherence Aspects, Göteborg, Sweden 18–19 May 2009 p.72.

    Google Scholar 

  194. Jan Weiland, Anatoly Zagorodny and Volodymyr Zasenko, Fluid and Kinetic Modelling on Timescales Longer than the Confinement Time in Bounded Systems. Proc. From Leonardo to ITER: Nonlinear and Coherence Aspects, Göteborg, Sweden 18–19 May 2009 p.96.

    Google Scholar 

  195. A. Zagorodny and J. Weiland, Closure, at the Irreducible Part of the Fourth Moment for the case of Constant Coefficients in the Fokker-Planck Equation, Proc. IFP-CNR –Chalmers Workshop on Nonlinear Phenomena in Fusion Plasmas, Villas Monastero, Varenna June 8–10 2011, page 24.

    Google Scholar 

  196. Jan. Weiland, and Anatoly Zagorodny, Fluid Closure, Relation to Particle Pinches, Fluid Resonances, Proc. IFP-CNR –Chalmers Workshop on Nonlinear Phenomena in Fusion Plasmas, Villas Monastero, Varenna June 8–10 2011, page 33.

    Google Scholar 

  197. J. Weiland, A. Zagorodny, V. Zasenko and N. Shatashvili, On the Physics Description of Fusion Plasmas. Joint ITER-IAEA-ICTP Advanced Workshop on “Fusion and Plasma Physics” October 3–14 2011. AIP Conf. Proc. 1445, (2012), I p34, II p54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weiland, J. (2012). Low Frequency Modes in Inhomogeneous Magnetic Fields. In: Stability and Transport in Magnetic Confinement Systems. Springer Series on Atomic, Optical, and Plasma Physics, vol 71. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3743-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3743-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3742-0

  • Online ISBN: 978-1-4614-3743-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics