Skip to main content

Statics and Dynamics in Generalized Coordinates

  • Chapter
  • First Online:
  • 4590 Accesses

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 29))

Abstract

We will consider a discrete (lumped) material system (DMS) in Euclidean space E 3 composed of N particles of masses m 1, m 2, , m N (see [1]), presented in Fig. 3.1, which, as mentioned earlier, will be called a discrete mechanical system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Heinrich Hertz (1857–1894), German physicist and mechanician working on contact problems and electromagnetic waves.

  2. 2.

    Joseph Lagrange (1736–1813), distinguished French and Italian mathematician and astronomer, working also in Berlin.

  3. 3.

    Edward Routh (1831–1907), English mathematician who played a significant role in the theory of control and stability.

  4. 4.

    William Hamilton (1805–1865), Irish mathematician, physician, and astronomer.

  5. 5.

    Philip E. B. Jourdain (1879–1919), English scientist.

  6. 6.

    Johann Peter Dirichlet (1805–1859), German mathematician of French origin working in Wrocław, Göttingen, and Berlin.

  7. 7.

    Evangelista Torricelli (1608–1647), Italian physicist and mathematician.

  8. 8.

    Adrien-Marie Legendre (1752–1833), French mathematician.

  9. 9.

    Ludwig Otto Hesse (1811–1874), German mathematician mainly working on the problem of algebraic invariance.

References

  1. J. Awrejcewicz, Oscillations of Lumped Deterministic Systems (WNT, Warsaw, 1996)

    Google Scholar 

  2. V.E. Zhuravlev, Fundamentals of Theoretical Mechanics (Fizmatlit, Moscow, 2001)

    Google Scholar 

  3. R. Gutowski, Analytical Mechanics (PWN, Warsaw, 1971)

    Google Scholar 

  4. Z. Osinski, General Mechanics (PWN, Warsaw, 1994)

    Google Scholar 

  5. Z. Koruba, J.W. Osiecki, Elements of Advanced Mechanics (Kielce University of Technology, Kielce, 2007)

    Google Scholar 

  6. A.M. Bloch, J.E. Marsden, D.V. Zenkov, Nonholonomic dynamics. Notices AMS 52(3), 324–333 (2005)

    MathSciNet  MATH  Google Scholar 

  7. W. Blajer, A geometric unification of constrained system dynamics. Multibody Syst. Dyn. 1(1), 3–21 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Schiehlen, Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Blajer, Methods of Multibody Systems Dynamics. (Technical University of Radom Press, Radom, 1998)

    Google Scholar 

  10. W. Blajer, On the determination of joint reactions in multibody mechanisms. Trans. ASME J. Mech. Design 126(2), 341–350 (2004)

    Article  Google Scholar 

  11. A.D. Markeev, Theoretical Mechanics (Nauka, Moscow, 1990)

    MATH  Google Scholar 

  12. P.E.B. Jourdain, Note on an analogue of Gauss’ principle of least constraint. Q. J. Pure Appl. Math. XL, 153–157, 1909

    Google Scholar 

  13. E. Wittbrodt, S. Sawiak, General Mechanics: Theory and Problems (Gdask Technical University, Gdask, Poland, 2005)

    Google Scholar 

  14. J. Awrejcewicz, Classical Mechanics: Statics and Kinematics (Springer, New York, 2012)

    MATH  Google Scholar 

  15. J.J. Craig, Adaptive Control of Mechanical Manipulators (Addison-Wesley, Reading, MA, 1987)

    Google Scholar 

  16. J. Knapczyk, P.A. Lebiediew, Theory of Spatial Mechanisms and Manipulators (WNT, Warsaw, 1990)

    Google Scholar 

  17. M. Olszewski, Manipulators and Industrial Robots (WNT, Warsaw, 1990)

    Google Scholar 

  18. J. Awrejcewicz, S. Pryk, in Dynamical Model of a Three-Degree-of-Freedom Manipulator, E. Onate, S.R. Idelsohn, eds. Computational Mechanics. New Trends and Applications, pp 1–110. (CMNE, Barcelona, Spain, 1998)

    Google Scholar 

  19. J. Awrejcewicz, Mathematical Modelling of Systems (WNT, Warsaw, 2007)

    Google Scholar 

  20. J. Awrejcewicz, Z. Koruba, Classical Mechanics: Applied Mechanics and Mechatronics (Springer, New York, 2012)

    MATH  Google Scholar 

  21. E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, with an Introduction to the Problem of Three Bodies (Dover Publications, New York, 1937)

    MATH  Google Scholar 

  22. L.D. Landau, E.M. Lifshitz, Mechanics Course of Theoretical Physics, vol. 1. (Franklin Book Company, Boca Raton, FL, 1972)

    Google Scholar 

  23. S.T. Thornton, J.B. Marion, Classical Dynamics of Particles and Systems (Saunders College Publishers, New York, 1995)

    Google Scholar 

  24. L.N. Hand, J.D. Finch, Analytical Mechanics (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  25. C. Gignoux, B. Silvestre-Brac, Solved Problems in Lagrangian and Hamiltonian Mechanics (Springer, Dordrecht, 2009)

    Book  MATH  Google Scholar 

  26. R.D. Gregory, Classical Mechanics (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  27. M. McCall, Classical Mechanics: From Newton to Einstein: A Modern Introduction (Wiley, Chichester, 2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Awrejcewicz, J. (2012). Statics and Dynamics in Generalized Coordinates. In: Classical Mechanics. Advances in Mechanics and Mathematics, vol 29. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3740-6_3

Download citation

Publish with us

Policies and ethics