Advertisement

Conclusions

  • Rong Wu
  • Johan H. Huijsing
  • Kofi A. A. Makinwa
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This final chapter summarizes the work described in Chaps. 1 to 6 and provides an overview of the original contributions and the most important findings presented in this thesis. It also shows how some of the techniques developed for bridge sensor readout can also be useful in other applications, and provides an outlook on future work.

References

  1. 1.
    Wu R, Makinwa KAA, Huijsing JH (2008) The design of a chopped current-feedback instrumentation amplifier. IEEE ISCAS, May Google Scholar
  2. 2.
    Wu R, Makinwa KAA, Huijsing JH(2009) A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple reduction loop. IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp 322–323, FebGoogle Scholar
  3. 3.
    Wu R, Makinwa KAA, Huisjing JH (2009) A Chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and anAC-coupled ripple reduction loop, IEEE J. Solid-State Circuits 44(12):3232–3243Google Scholar
  4. 4.
    Luff GF (2010) Chopper stabilized amplifier. United States Patent, US 7724080 B2, 25 May, 2010.Google Scholar
  5. 5.
    Burt R, Zhang J (2006) A micropower chopper-stabilized operational amplifier using a sc notch filter with synchronous integration inside the continuous-time signal path. IEEE J. Solid-State Circuits 41(12):2729–2736CrossRefGoogle Scholar
  6. 6.
    Kusuda Y (2010) Auto correction feedback for ripple suppression in a chopper amplifier. IEEE J. Solid-State Circuits 45(8):1436–1445CrossRefGoogle Scholar
  7. 7.
    Wu R, Huijsing JH, Makinwa KAA (2011) A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06 % untrimmed gain error. IEEE ISSCC Dig. Tech. Papers, pp 244–245, FebGoogle Scholar
  8. 8.
    Wu R, Huijsing JH, Makinwa KAA (2011) A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06 % untrimmed gain error. IEEE J. Solid-State Circuits 46(12):2794–2806CrossRefGoogle Scholar
  9. 9.
    Wu R, Huijsing JH, Makinwa KAA (2011) A 21-bit ± 40 mV range read-out IC for bridge transducers. Submitted to IEEE J. Solid-State Circuits.Google Scholar
  10. 10.
    Wu R, Huijsing JH, Makinwa KAA (2011) A 21-bit ± 40 mV range read-out IC for bridge transducers. IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp 110–111, FebGoogle Scholar
  11. 11.
    Wu R, Huijsing JH, Makinwa KAA (2011) A 21-bit ± 40 mV range read-out IC for bridge transducers. IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp 241–244, NovGoogle Scholar
  12. 12.
    Fan Q, Huijsing JH, Makinwa KAA (2010) A 21nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2 μV offset. IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp 80–81, FebGoogle Scholar
  13. 13.
    Fan Q, Huijsing JH, Makinwa KAA (2010) A 1.8 μW 1 μV-offset capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS. ESSCIRC IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp 170–173, SeptGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rong Wu
    • 1
  • Johan H. Huijsing
    • 2
  • Kofi A. A. Makinwa
    • 2
  1. 1.
  2. 2.

Personalised recommendations