Skip to main content

Current-Feedback Instrumentation Amplifiers and Gain Accuracy Improvement Techniques

  • Chapter
  • First Online:
Precision Instrumentation Amplifiers and Read-Out Integrated Circuits

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 3766 Accesses

Abstract

As discussed in Chap. 1, compared to other instrumentation amplifier topologies, the current-feedback instrumentation amplifier (CFIA) is more suitable for bridge read-out because of its high CMRR [1, 2], rail-sensing capability [1], high input impedance and power efficiency [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van den Dool BJ, Huijsing JH (July 1993) Indirect current feedback instrumentation amplifier with a common-mode input range that includes the negative rail. IEEE J Solid-State Circuits 28(7):743–749

    Article  Google Scholar 

  2. Chan PK, Ng KA, Zhang XL (2004) A CMOS chopper-stabilized differential difference amplifier for biomedical integrated circuits. In Proceedings of the The 47th IEEE international midwest symposium on circuits and systems (MWSCAS), III-33-6, vol 3

    Google Scholar 

  3. Wu R, Makinwa KAA, Huisjing JH (2009) A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple reduction loop. IEEE J Solid-State Circuits 44(12):3232–3243

    Article  Google Scholar 

  4. Fan Q, Huijsing JH, Makinwa KAA (2010) A 21 nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2 μV offset. In Proceedings of the IEEE ISSCC, digital technical papers, pp 80–81

    Google Scholar 

  5. Pertijs MAP, Kindt WJ (2010) A 140 dB-CMRR current-feedback istrumentation amplifier employing ping-pong auto-zeroing and chopping. IEEE J Solid-State Circuits 45(10):2044–2056

    Article  Google Scholar 

  6. Huijsing JH (1981) Comparative study of some types of differential-differential amplifiers. In Proceedings of the European conference on electrotechnics, Eurocon, B 6-8(1)(2), pp 22–26

    Google Scholar 

  7. Krabbe H (1971) A high-performance monolithic instrumentation amplifier.In Proceedings of the IEEE ISSCC, digital technical papers, pp 186–187

    Google Scholar 

  8. Hamstra GH, Peper A, Grimbergen CA (1984) Low-power low-noise instrumentation amplifier for physiological signals. Med Biol Eng Comput 22:272–274

    Google Scholar 

  9. Steyaert MSJ, Sansen WMC, Chang Z (1987) A micropower low-noise monolithic instrumentation amplifier for medical purpose. IEEE J Solid-State Circuits SC-22(6):1163–1168

    Google Scholar 

  10. Yazicioglu RF, Merken P, Puers R, van Hoof C (May 2007) A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J Solid-State Circuits 42(5):1100–1110

    Article  Google Scholar 

  11. Witte JF, Huijsing JH, Makinwa KAA (2009) A chopper and auto-zero offset-stabilized CMOS instrumentation amplifier. In Proceedings of the IEEE symposium on VLSI circuits, pp 210–211

    Google Scholar 

  12. Witte JF, Huijsing JH, Makinwa KAA (2008) A current-feedback instrumentation amplifier with 5 μV offset for bidirectional high-side current-sensing. IEEE ISSCC, digital technical papers, pp 74–75

    Google Scholar 

  13. Huijsing JH, Shahi B (2007) Accurate voltage-to-current converters for rail-sensing current-feedback instrumentation amplifiers. United States Patent, Nr. 7,2022,738, Apr. 2007

    Google Scholar 

  14. Boucher RE, Huijsing JH (2008) Auto-gain correction and common mode voltage cancellation in a precision amplifier. United States Patent, application no. 12/253620, Oct. 2008

    Google Scholar 

  15. Huijsing JH (2008) Instrumentation amplifiers developments. In Proceedings of the AACD workshop, pp 105–126

    Google Scholar 

  16. Witte F (2008) Dynamic offset compenated CMOS amplifiers. PhD Thesis, Delft University of Technology, The Netherlands

    Google Scholar 

  17. Sakunia S, Witte F, Pertijs M, Makinwa KAA (2011) A ping-pong-pang current-feedback instrumentation amplifier with 0.04 % gain error. In procedings of the IEEE symposium on VLSI circuits, pp 60–61

    Google Scholar 

  18. Wu R, Huijsing JH, Makinwa KAA (Dec. 2011) A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06 % untrimmed gain error. IEEE J Solid-State Circuits 46(12):2794–2806

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, R., Huijsing, J.H., Makinwa, K.A.A. (2013). Current-Feedback Instrumentation Amplifiers and Gain Accuracy Improvement Techniques. In: Precision Instrumentation Amplifiers and Read-Out Integrated Circuits. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3731-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3731-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3730-7

  • Online ISBN: 978-1-4614-3731-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics