Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 3670 Accesses

Abstract

This thesis describes the theory, design and realization of precision instrumentation amplifiers and read-out ICs for interfacing bridge transducers and thermocouples. The goal of the work is to investigate power-efficient techniques to eliminate low frequency (LF) errors in the read-out electronics, so as to achieve high accuracy, low noise and low drift while preserving low power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fitzgerald V (2010) Automotive sensor demand forecast 2008 to 2017: global economic rebound sparks growth. Available at https://www.strategyanalytics.com/default.aspx?mod=ReportAbstractViewer&a0=5758

  2. Global load cells market to reach US$1.5 billion by 2015, according to a new report by global industry analysts, Inc (2011). Available at http://www.prweb.com/releases/load_cells/single_point_shear_beam/prweb8121165.html

  3. Bakker V, Huijsing JH (2000) High-accuracy CMOS smart temperature sensors. Kluwer academic publishers, Boston

    Google Scholar 

  4. Huijsing JH, Riedijk FR, van der Horm G (1994) Developments in integrated smart sensors. Sensors Actuators 43(1–3):276–288

    Article  Google Scholar 

  5. Erdi G (1981) Amplifier techniques for combining low noise, precision, and high-speed performance. IEEE J Solid-State Circuits SC-16(6):653–661

    Google Scholar 

  6. Poujois R, Borel J (1978) A low drift fully integrated MOSFET operational amplifier. IEEE J Solid-State Circuits 13:499–503

    Article  Google Scholar 

  7. Enz CC, Vittoz EA, Krummenacher F (1987) A CMOS chopper amplifier. IEEE J Solid-State Circuits SC-22(3):335–342

    Google Scholar 

  8. Witte JF, Huijsing JH, Makinwa KAA (2009) A chopper and auto-zero offset-stabilized CMOS instrumentation amplifier. Paper presented at the IEEE symposium on VLSI circuits, pp 210-211

    Google Scholar 

  9. Pertijs MAP, Kindt WJ (2009) A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping. In Proceedings of the IEEE ISSCC, digital technical papers, pp 324–325

    Google Scholar 

  10. Sakunia S, Witte F, Pertijs M, Makinwa KAA (2011) A ping-pong-pang current-feedback instrumentation amplifier with 0.04 % gain error. Paper presented at the IEEE Symposium on VLSI Circuits, pp 60–61

    Google Scholar 

  11. Witte JF, Huijsing JH, Makinwa KAA (2008) A current-feedback instrumentation amplifier with 5 μV offset for bidirectional high-side current-sensing In Proceedings of the IEEE ISSCC, digital technical papers, pp 74–75

    Google Scholar 

  12. Denison T et al (2007) A 2.2 μW 94nV/√Hz chopper-stabilized instrumentation amplifier for EEG detection in chronic implants. In Proceedings of the IEEE ISSCC, digital technical papers, pp 162–163

    Google Scholar 

  13. Yazicioglu RF et al (2008) A 200 μW eight-channel acquisition ASIC for ambulatory EEG systems. In Proceedings of the IEEE ISSCC, digital technical papers, pp 164–165

    Google Scholar 

  14. Kejariwal M, Ammisetti P, Thomsen A (2002) A 250 + dB open loop gain feedforward compensated high precision operational amplifier. In Proceedings of the ESSCIRC, digital technical papers, pp 187–190

    Google Scholar 

  15. AD8250 data sheet (2007). Analog Devices Inc., Norwood, MA

    Google Scholar 

  16. van den Dool BJ, Huijsing JH (1993) Indirect current feedback instrumentation amplifier with a common-mode input range that includes the negative rail. IEEE J Solid-State Circuits 28(7):743–749

    Article  Google Scholar 

  17. Van Peteghem PM, Verbauwhede I, Sansen WMC (1985) Micropower high-performance SC building block for integrated low-level signal processing. IEEE J Solid-State Circuits SC-20(4):837–844

    Google Scholar 

  18. Martin K, Ozcolak L, Lee YS, Temes GC (1987) A differential switched-capacitor amplifier. IEEE J Solid-State Circuits SC-22(1):104–106

    Google Scholar 

  19. Enz CC, Temes GC (1996) Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. In Proceedings of the institute of electrical and electronics engineers(IEEE) vol 84(11). pp 1584–1614

    Google Scholar 

  20. Verma N, Shoeb A, Bohorquez J et al (2010) A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid-State Circuits 45(4):804–816

    Article  Google Scholar 

  21. Fan Q, Huijsing JH, Makinwa KAA (2010) A 1.8 μW 1 μV-offset capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS. In Proceedings of the ESSCIRC, digital technical papers, pp 170–173

    Google Scholar 

  22. Ezekwe C et al (2011) A 6.7nV/√Hz sub-mHz-1/f-corner 14b analog-to-digital interface for rail-to-rail precision voltage sensing. In Proceedings of the IEEE ISSCC, digital technical papers, pp 246–247

    Google Scholar 

  23. Toumazou C, Ligey FJ, Anding ME (1990) Extending voltage-mode op amps to current-mode performance. In Proceedings of the IEE.-Circuits, Devices and Systems, vol 137(2). pp 116–130

    Google Scholar 

  24. Azhari SJ, Fazlalipoor H (2009) CMRR in voltage-op-amp-based current-mode instrumentation amplifiers (CMIA). IEEE Trans Instrum Meas 58:563–569

    Article  Google Scholar 

  25. Koli K, Halonen KAI (2000) CMRR enhancement techniques for current-mode instrumentation amplifiers. IEEE Trans Circuits Syst I: Fundam. Theory Applicat 47(5):622–632

    Google Scholar 

  26. Schaffer V, Snoeij MF, Ivanov MV, Trifonov DT (2009) A 36 V programmable instrumentation amplifier with sub-20 μV offset and a CMRR in excess of 120 dB at all gain settings. IEEE J Solid-State Circuits 44(7):2036–2046

    Article  Google Scholar 

  27. Huijsing JH (2011) Operational amplifiers: theory and design, 2nd edn. Springer, Netherlands

    Book  Google Scholar 

  28. Wu R, Makinwa KAA, Huisjing JH (2009) A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple reduction loop. IEEE J Solid-State Circuit 44(12):3232–3243

    Article  Google Scholar 

  29. Krabbe H (1971) A high-performance monolithic instrumentation amplifier. In Proceedings of the IEEE ISSCC, digital technical papers, pp 186–187

    Google Scholar 

  30. Huijsing JH (1981) Comparative study of some types of differential–differential amplifiers. Paper Presented at the European Conference on Electrotechnics, Eurocon, B 6–8(1)(2), pp 22–26

    Google Scholar 

  31. Säckinger E, Guggenbühl W (1987) A versatile building block: the CMOS differential difference amplifier. IEEE J Solid-State Circuits SC-22(2):287–294

    Google Scholar 

  32. Hamstra GH, Peper A, Grimbergen CA (1984) Low-power low-noise instrumentation amplifier for physiological signals. Med Biol Eng Comput 22(3):272–274

    Google Scholar 

  33. Steyaert MSJ, Sansen WMC, Chang Z (1987) A micropower low-noise monolithic instrumentation amplifier for medical purpose. IEEE J Solid-State Circuits SC-22(6):1163–1168

    Google Scholar 

  34. Chan PK, Ng KA, Zhang XL (2004) A CMOS chopper-stabilized differential difference amplifier for biomedical integrated circuits. In Proceedings of the the 47th IEEE international midwest symposium on circuits and systems (MWSCAS), III-33-6, vol 3

    Google Scholar 

  35. Pertijs MAP, Kindt WJ (2010) A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping. IEEE J Solid-State Circuits 45(10):2044–2056

    Article  Google Scholar 

  36. Wu R, Huijsing JH, Makinwa KAA (2011) A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06 % untrimmed gain error. In Proceedings of the IEEE ISSCC, digital technical papers, pp 244–245

    Google Scholar 

  37. Murmann B, Boser B (2004) Digitally assisted pipeline ADCs: theory and implementation. Kluwer Academic Publishers, Boston

    Google Scholar 

  38. McCartney D, Sherry, Sherry A et al (1997) A low-noise low-drift transducer ADC IEEE J Solid-State Circuits 32(7):959–967

    Google Scholar 

  39. Thomsen A et al (2000) A DC measurement IC with 130nVpp noise in 10 Hz. In Proceedings of the IEEE ISSCC, digital technical papers, pp 334–335

    Google Scholar 

  40. AD7193 datasheet: http://www.analog.com/en/analog-to-digital converters/adconverters/ad7193/products/product.html.

  41. CS5530 datasheet: http://www.cirrus.com/en/products/pro/detail/P1108.html.

  42. ADS 1282 datasheet: http://focus.ti.com/docs/prod/folders/print/ads1282.html.

  43. Norsworthy SR, Schreier R, Temes GC (eds) (1997) Delta-sigma data converters: theory, design and simulation. Piscataway, IEEE Press, New York

    Google Scholar 

  44. Quiquempoix V et al (2006) A Low-power 22-bit incremental ADC. IEEE J Solid-State Circuits 41(7):1562–1571

    Article  Google Scholar 

  45. van der Plassche RJ (1978) A sigma-delta modulator as an A/D converter. IEEE Trans Circuits Syst 25(7):510–514

    Article  Google Scholar 

  46. van de Meer JC, Riedijk FR, van Kampen E, Makinwa KAA, Huijsing JH (2005) A fully integrated CMOS hall sensor with a 3.65μT 3σ offset for compass applications. In Proceedings of the IEEE ISSCC, digital technical papers, pp 246–247

    Google Scholar 

  47. Wu R, Huijsing JH, Makinwa KAA (2011) A 21-bit ± 40 mV range read-out IC for bridge transducers. In Proceedings of the IEEE ISSCC, digital technical papers, pp 110–111

    Google Scholar 

  48. Meijer GC (1994) Thermal sensors. Institute of physics publishing, Bristol, Philadelphia

    Google Scholar 

  49. Slattery C, Nie M (2005) A reference design for high-performance, low-cost weigh scales. Available at: http://www.analog.com/library/analogDialogue/archives/39-12/weigh_scale.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, R., Huijsing, J.H., Makinwa, K.A.A. (2013). Introduction. In: Precision Instrumentation Amplifiers and Read-Out Integrated Circuits. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3731-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3731-4_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3730-7

  • Online ISBN: 978-1-4614-3731-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics