Introduction

  • Rong Wu
  • Johan H. Huijsing
  • Kofi A. A. Makinwa
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This thesis describes the theory, design and realization of precision instrumentation amplifiers and read-out ICs for interfacing bridge transducers and thermocouples. The goal of the work is to investigate power-efficient techniques to eliminate low frequency (LF) errors in the read-out electronics, so as to achieve high accuracy, low noise and low drift while preserving low power consumption.

References

  1. 1.
    Fitzgerald V (2010) Automotive sensor demand forecast 2008 to 2017: global economic rebound sparks growth. Available at https://www.strategyanalytics.com/default.aspx?mod=ReportAbstractViewer&a0=5758
  2. 2.
    Global load cells market to reach US$1.5 billion by 2015, according to a new report by global industry analysts, Inc (2011). Available at http://www.prweb.com/releases/load_cells/single_point_shear_beam/prweb8121165.html
  3. 3.
    Bakker V, Huijsing JH (2000) High-accuracy CMOS smart temperature sensors. Kluwer academic publishers, BostonGoogle Scholar
  4. 4.
    Huijsing JH, Riedijk FR, van der Horm G (1994) Developments in integrated smart sensors. Sensors Actuators 43(1–3):276–288CrossRefGoogle Scholar
  5. 5.
    Erdi G (1981) Amplifier techniques for combining low noise, precision, and high-speed performance. IEEE J Solid-State Circuits SC-16(6):653–661Google Scholar
  6. 6.
    Poujois R, Borel J (1978) A low drift fully integrated MOSFET operational amplifier. IEEE J Solid-State Circuits 13:499–503CrossRefGoogle Scholar
  7. 7.
    Enz CC, Vittoz EA, Krummenacher F (1987) A CMOS chopper amplifier. IEEE J Solid-State Circuits SC-22(3):335–342Google Scholar
  8. 8.
    Witte JF, Huijsing JH, Makinwa KAA (2009) A chopper and auto-zero offset-stabilized CMOS instrumentation amplifier. Paper presented at the IEEE symposium on VLSI circuits, pp 210-211Google Scholar
  9. 9.
    Pertijs MAP, Kindt WJ (2009) A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping. In Proceedings of the IEEE ISSCC, digital technical papers, pp 324–325Google Scholar
  10. 10.
    Sakunia S, Witte F, Pertijs M, Makinwa KAA (2011) A ping-pong-pang current-feedback instrumentation amplifier with 0.04 % gain error. Paper presented at the IEEE Symposium on VLSI Circuits, pp 60–61Google Scholar
  11. 11.
    Witte JF, Huijsing JH, Makinwa KAA (2008) A current-feedback instrumentation amplifier with 5 μV offset for bidirectional high-side current-sensing In Proceedings of the IEEE ISSCC, digital technical papers, pp 74–75Google Scholar
  12. 12.
    Denison T et al (2007) A 2.2 μW 94nV/√Hz chopper-stabilized instrumentation amplifier for EEG detection in chronic implants. In Proceedings of the IEEE ISSCC, digital technical papers, pp 162–163Google Scholar
  13. 13.
    Yazicioglu RF et al (2008) A 200 μW eight-channel acquisition ASIC for ambulatory EEG systems. In Proceedings of the IEEE ISSCC, digital technical papers, pp 164–165Google Scholar
  14. 14.
    Kejariwal M, Ammisetti P, Thomsen A (2002) A 250 + dB open loop gain feedforward compensated high precision operational amplifier. In Proceedings of the ESSCIRC, digital technical papers, pp 187–190Google Scholar
  15. 15.
    AD8250 data sheet (2007). Analog Devices Inc., Norwood, MAGoogle Scholar
  16. 16.
    van den Dool BJ, Huijsing JH (1993) Indirect current feedback instrumentation amplifier with a common-mode input range that includes the negative rail. IEEE J Solid-State Circuits 28(7):743–749CrossRefGoogle Scholar
  17. 17.
    Van Peteghem PM, Verbauwhede I, Sansen WMC (1985) Micropower high-performance SC building block for integrated low-level signal processing. IEEE J Solid-State Circuits SC-20(4):837–844Google Scholar
  18. 18.
    Martin K, Ozcolak L, Lee YS, Temes GC (1987) A differential switched-capacitor amplifier. IEEE J Solid-State Circuits SC-22(1):104–106Google Scholar
  19. 19.
    Enz CC, Temes GC (1996) Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. In Proceedings of the institute of electrical and electronics engineers(IEEE) vol 84(11). pp 1584–1614Google Scholar
  20. 20.
    Verma N, Shoeb A, Bohorquez J et al (2010) A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid-State Circuits 45(4):804–816CrossRefGoogle Scholar
  21. 21.
    Fan Q, Huijsing JH, Makinwa KAA (2010) A 1.8 μW 1 μV-offset capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS. In Proceedings of the ESSCIRC, digital technical papers, pp 170–173Google Scholar
  22. 22.
    Ezekwe C et al (2011) A 6.7nV/√Hz sub-mHz-1/f-corner 14b analog-to-digital interface for rail-to-rail precision voltage sensing. In Proceedings of the IEEE ISSCC, digital technical papers, pp 246–247Google Scholar
  23. 23.
    Toumazou C, Ligey FJ, Anding ME (1990) Extending voltage-mode op amps to current-mode performance. In Proceedings of the IEE.-Circuits, Devices and Systems, vol 137(2). pp 116–130Google Scholar
  24. 24.
    Azhari SJ, Fazlalipoor H (2009) CMRR in voltage-op-amp-based current-mode instrumentation amplifiers (CMIA). IEEE Trans Instrum Meas 58:563–569CrossRefGoogle Scholar
  25. 25.
    Koli K, Halonen KAI (2000) CMRR enhancement techniques for current-mode instrumentation amplifiers. IEEE Trans Circuits Syst I: Fundam. Theory Applicat 47(5):622–632Google Scholar
  26. 26.
    Schaffer V, Snoeij MF, Ivanov MV, Trifonov DT (2009) A 36 V programmable instrumentation amplifier with sub-20 μV offset and a CMRR in excess of 120 dB at all gain settings. IEEE J Solid-State Circuits 44(7):2036–2046CrossRefGoogle Scholar
  27. 27.
    Huijsing JH (2011) Operational amplifiers: theory and design, 2nd edn. Springer, NetherlandsCrossRefGoogle Scholar
  28. 28.
    Wu R, Makinwa KAA, Huisjing JH (2009) A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple reduction loop. IEEE J Solid-State Circuit 44(12):3232–3243CrossRefGoogle Scholar
  29. 29.
    Krabbe H (1971) A high-performance monolithic instrumentation amplifier. In Proceedings of the IEEE ISSCC, digital technical papers, pp 186–187Google Scholar
  30. 30.
    Huijsing JH (1981) Comparative study of some types of differential–differential amplifiers. Paper Presented at the European Conference on Electrotechnics, Eurocon, B 6–8(1)(2), pp 22–26Google Scholar
  31. 31.
    Säckinger E, Guggenbühl W (1987) A versatile building block: the CMOS differential difference amplifier. IEEE J Solid-State Circuits SC-22(2):287–294Google Scholar
  32. 32.
    Hamstra GH, Peper A, Grimbergen CA (1984) Low-power low-noise instrumentation amplifier for physiological signals. Med Biol Eng Comput 22(3):272–274Google Scholar
  33. 33.
    Steyaert MSJ, Sansen WMC, Chang Z (1987) A micropower low-noise monolithic instrumentation amplifier for medical purpose. IEEE J Solid-State Circuits SC-22(6):1163–1168Google Scholar
  34. 34.
    Chan PK, Ng KA, Zhang XL (2004) A CMOS chopper-stabilized differential difference amplifier for biomedical integrated circuits. In Proceedings of the the 47th IEEE international midwest symposium on circuits and systems (MWSCAS), III-33-6, vol 3Google Scholar
  35. 35.
    Pertijs MAP, Kindt WJ (2010) A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping. IEEE J Solid-State Circuits 45(10):2044–2056CrossRefGoogle Scholar
  36. 36.
    Wu R, Huijsing JH, Makinwa KAA (2011) A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06 % untrimmed gain error. In Proceedings of the IEEE ISSCC, digital technical papers, pp 244–245Google Scholar
  37. 37.
    Murmann B, Boser B (2004) Digitally assisted pipeline ADCs: theory and implementation. Kluwer Academic Publishers, BostonGoogle Scholar
  38. 38.
    McCartney D, Sherry, Sherry A et al (1997) A low-noise low-drift transducer ADC IEEE J Solid-State Circuits 32(7):959–967Google Scholar
  39. 39.
    Thomsen A et al (2000) A DC measurement IC with 130nVpp noise in 10 Hz. In Proceedings of the IEEE ISSCC, digital technical papers, pp 334–335Google Scholar
  40. 40.
    AD7193 datasheet: http://www.analog.com/en/analog-to-digital converters/adconverters/ad7193/products/product.html.
  41. 41.
  42. 42.
  43. 43.
    Norsworthy SR, Schreier R, Temes GC (eds) (1997) Delta-sigma data converters: theory, design and simulation. Piscataway, IEEE Press, New YorkGoogle Scholar
  44. 44.
    Quiquempoix V et al (2006) A Low-power 22-bit incremental ADC. IEEE J Solid-State Circuits 41(7):1562–1571CrossRefGoogle Scholar
  45. 45.
    van der Plassche RJ (1978) A sigma-delta modulator as an A/D converter. IEEE Trans Circuits Syst 25(7):510–514CrossRefGoogle Scholar
  46. 46.
    van de Meer JC, Riedijk FR, van Kampen E, Makinwa KAA, Huijsing JH (2005) A fully integrated CMOS hall sensor with a 3.65μT 3σ offset for compass applications. In Proceedings of the IEEE ISSCC, digital technical papers, pp 246–247Google Scholar
  47. 47.
    Wu R, Huijsing JH, Makinwa KAA (2011) A 21-bit ± 40 mV range read-out IC for bridge transducers. In Proceedings of the IEEE ISSCC, digital technical papers, pp 110–111Google Scholar
  48. 48.
    Meijer GC (1994) Thermal sensors. Institute of physics publishing, Bristol, PhiladelphiaGoogle Scholar
  49. 49.
    Slattery C, Nie M (2005) A reference design for high-performance, low-cost weigh scales. Available at: http://www.analog.com/library/analogDialogue/archives/39-12/weigh_scale.html

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rong Wu
    • 1
  • Johan H. Huijsing
    • 2
  • Kofi A. A. Makinwa
    • 2
  1. 1.
  2. 2.

Personalised recommendations