Skip to main content

Cortex: Way Station or Locus of the Tinnitus Percept?

  • Chapter
  • First Online:
Tinnitus

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 44))

Abstract

One extreme position for the cortical participation in the tinnitus percept is that the cortex just responds to the changing neural activity from subcortical areas in a way similar to its processing of auditory information originating in the outside world. The other extreme position is that the cortex not only initiates the tinnitus percept but also changes the activity in subcortical structures via corticofugal pathways. It is more likely that an interaction exists between changes at subcortical levels, including the auditory periphery and the thalamocortical system combined with the limbic system, that function to modulate the subcortical activity. One has to realize that even in the input layers of auditory cortex, at most 10% of this input is the result of afferent activity from the thalamus, whereas the remainder originates from other cortical layers or other cortical areas. Because there are about 13 cortical areas in primates, including humans and cats (Winer & Lee, 2007), ample opportunity exists for the cortex to continually process its own activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, S. D., Hughes, L. F., Bauer, C. A., Salvi, R., & Caspary, D. M. (1999). Detection of glutamate decarboxylase isoforms in rat inferior colliculus following acoustic exposure. Neuroscience, 93, 1375–1381.

    PubMed  CAS  Google Scholar 

  • Abeles, M. (1991). Corticonics. Neural circuits of the cerebral cortex. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Attias, J., Urbach, D., Gold, S., & Shemesh, Z. (1993). Auditory event related potentials in chronic tinnitus patients with noise induced hearing loss. Hearing Research, 71, 106–113.

    PubMed  CAS  Google Scholar 

  • Baguley, D. M., Jones, S., Wilkins, I., Axon, P. R., & Moffat, D. A. (2005). The inhibitory effect of intravenous lidocaine infusion on tinnitus after translabyrinthine removal of vestibular schwannoma: A double-blind, placebo-controlled, crossover study. Otology & Neurotology, 26, 169–176.

    Google Scholar 

  • Bao, S., Chan, V. T. & Merzenich, N. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412, 79–83.

    PubMed  CAS  Google Scholar 

  • Bao, S., Chang, E. F., Davis, J.D., Gobeske, K. T. & Merzenich, M. M. (2003). Progressive degradation and subsequent refinement of acoustic representations in the adult auditory cortex. Journal of Neuroscience, 23, 10765–10775.

    PubMed  CAS  Google Scholar 

  • Bauer, C. A., Turner, J. G., Caspary, D. M., Myers, K. S., & Brozoski, T. J. (2008). Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. Journal of Neuroscience Research, 86, 2564–2578.

    PubMed  CAS  Google Scholar 

  • Bendor, D., & Wang, X. (2005). The neuronal representation of pitch in primate auditory cortex. Nature, 436,1161–1165.

    PubMed  CAS  Google Scholar 

  • Bowen, G. P., Lin, D., Taylor, M. K., & Ison, J. R. (2003). Auditory cortex lesions in the rat impair both temporal acuity and noise increment thresholds, revealing a common neural substrate. Cerebral Cortex, 13, 815–822.

    PubMed  Google Scholar 

  • Butler, R. A., Diamond, I. T., & Neff, D. W. (1957). Role of auditory cortex in discrimination of changes in frequency. Journal of Neurophysiology, 20, 108–120.

    PubMed  CAS  Google Scholar 

  • Cariani, P. A., & Delgutte, B. (1996). Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. Journal of Neurophysiology, 76(3), 1698–1716.

    CAS  Google Scholar 

  • Cazals, Y., Horner, K. C., & Huang, Z. W. (1998). Alterations in average spectrum of cochleoneural activity by long-term salicylate treatment in the guinea pig: A plausible index of tinnitus. Journal of Neurophysiology, 80, 2113–2120.

    PubMed  CAS  Google Scholar 

  • –Chen, G. D., & Jastreboff, P. J. (1995). Salicylate-induced abnormal activity in the inferior colliculus of rats. Hearing Research, 82, 158–178.

    PubMed  CAS  Google Scholar 

  • Chen, G. D., Kermany, M. H., D’Elia, A., Ralli, M., Tanakam C., Bielefeld, E. C., et al. (2010). Too much of a good thing: Long-term treatment with salicylate strengthens outer hair cell function but impairs auditory neural activity. Hearing Research, 265, 63–69.

    PubMed  CAS  Google Scholar 

  • –Cheung, S. W., & Larson, P. S. (2010). Tinnitus modulation by deep brain stimulation in locus of caudate neurons (area LC). Neuroscience, 169, 1768–1778.

    PubMed  CAS  Google Scholar 

  • Dai, H. (2010). Harmonic pitch: Dependence on resolved partials, spectral edges, and combination tones. Hearing Research, 270, 143–150.

    PubMed  Google Scholar 

  • De Ridder, D., De Mulder, G., Verstraeten, E., Van der Kelen, K., Sunaert, S., Smits, M., et al. (2006). Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL: Journal for Oto-Rhino-Laryngology and Its Related Specialties, 68, 48–54.

    PubMed  Google Scholar 

  • Diesch, E., Andermann, M., Flor, H., & Rupp, A. (2010). Functional and structural aspects of tinnitus-related enhancement and suppression of auditory cortex activity. NeuroImage, 50(4), 1545–1559.

    PubMed  Google Scholar 

  • Eggermont, J. J. (2006). A time-line of auditory cortical reorganization after noise-induced hearing loss. In S. G. Lomber & J. J. Eggermont (Eds.), Reprogramming the cerebral cortex: Adaptive plasticity following central and peripheral lesions (pp. 143–158). New York: Oxford University Press.

    Google Scholar 

  • Eggermont, J. J. (2007). Correlated neural activity as the driving force for functional changes in auditory cortex. Hearing Research, 229, 69–80.

    PubMed  Google Scholar 

  • Eggermont, J. J. (2008). Role of auditory cortex in noise and drug-induced tinnitus. American Journal of Audiology 27(2), S162–S167.

    Google Scholar 

  • Eggermont, J. J., & Kenmochi, M. (1998). Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex. Hearing Research, 117, 149–160.

    PubMed  CAS  Google Scholar 

  • Engineer, N. D., Riley, J. R., Seale, J. D., Vrana, W. A., Shetake, J. A., Sudanagunta, S. P., et al. (2011). Reversing pathological neural activity using targeted plasticity. Nature, 470(7332), 101–104.

    PubMed  Google Scholar 

  • Formisano, E., Kim, D. S., Di Salle, F., van de Moortele, P. F., Ugurbil, K., & Goebel, R. (2003). Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron, 40, 859–869.

    PubMed  CAS  Google Scholar 

  • Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Science, 6, 78–84.

    Google Scholar 

  • Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6, 1216–1223.

    PubMed  CAS  Google Scholar 

  • Giraud, A. L., Chery-Croze, S., Fischer, G., Fischer, C., Vighetto, A., Gregoire, M. C., et al. (1999). A selective imaging of tinnitus. NeuroReport, 10, 1–5.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., & Neff, W. D. (1961). Frequency discrimination after bilateral ablation of cortical auditory areas. Journal of Neurophysiology, 24, 119–128.

    PubMed  CAS  Google Scholar 

  • Hart, H. C., Palmer, A. R., & Hall, D. A. (2003). Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. Cerebral Cortex, 13, 773–781.

    PubMed  Google Scholar 

  • He, J. (1997). Modulatory effects of regional cortical activation on the onset responses of the cat medial geniculate neurons. Journal of Neurophysiology, 77(2), 896–908.

    PubMed  CAS  Google Scholar 

  • He, J., Yu, Y. Q., Xiong, Y., Hashikawam, T., & Chan, Y. S. (2002). Modulatory effect of cortical activation on the lemniscal auditory thalamus of the guinea pig. Journal of Neurophysiology, 88(2), 1040–1050.

    PubMed  Google Scholar 

  • Heffner, H. (1978). Effect of auditory cortex ablation on localization and discrimination of brief sounds. Journal of Neurophysiology, 41, 963–976.

    PubMed  CAS  Google Scholar 

  • Henry, J. A., Dennis, K. C., & Schechter, M. A. (2005). General review of tinnitus: Prevalence, mechanisms, effects, and management. Journal of Speech, Language, and Hearing Research, 48, 1204–1235.

    PubMed  Google Scholar 

  • Hoke, M., Feldmann, H., Pantev, C., Lütkenhöner, B., & Lehnertz, K. (1989). Objective evidence of tinnitus in auditory evoked magnetic fields. Hearing Research, 37, 281–286.

    PubMed  CAS  Google Scholar 

  • Humphries, C., Liebenthal, E., & Binder, J.R. (2010). Tonotopic organization of human auditory cortex. NeuroImage, 50, 1202–1211.

    PubMed  Google Scholar 

  • Hunter, K. P., & Willott, J. F. (1993). Effects of bilateral lesions of auditory cortex in mice on the acoustic startle response. Physiology and Behaviour, 54, 1133–1139.

    CAS  Google Scholar 

  • Irvine, D. R., Rajan, R., & Smith, S. (2003). Effects of restricted cochlear lesions in adult cats on the frequency organization of the inferior colliculus. Journal of Comparative Neurology, 467, 354–374.

    PubMed  Google Scholar 

  • Jacobson, G. P., & McCaslin, D. L. (2003). A reexamination of the long latency N1 response in patients with tinnitus. Journal of the American Academy of Audiology, 14, 393–400.

    PubMed  Google Scholar 

  • Jastreboff, P. J. (1990). Phantom auditory perception (tinnitus): Mechanisms of generation and perception. Neuroscience Research, 8, 221–254.

    PubMed  CAS  Google Scholar 

  • Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Reviews, 84, 541–577.

    PubMed  CAS  Google Scholar 

  • Kamke, M. R., Brown, M., & Irvine, D. R. (2003). Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions. Journal of Comparative Neurology, 459, 355–367.

    PubMed  Google Scholar 

  • Kenmochi, M., & Eggermont, J. J. (1997). Salicylate and quinine affect the central nervous system. Hearing Research, 113, 110–116.

    PubMed  CAS  Google Scholar 

  • Khosla, D., Ponton, C. W., Eggermont, J. J., Kwong, B., Don, M., & Vasama, J. P. (2003). Differential ear effects of profound unilateral deafness on the adult human central auditory system. Journal of the Association for Research in Otolaryngology, 4, 235–249.

    PubMed  Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279, 1714–1718.

    PubMed  CAS  Google Scholar 

  • Kimura, M., & Eggermont, J. J. (1999). Effects of acute pure tone induced hearing loss on response properties in three auditory cortical fields in cat. Hearing Research, 135, 146–162.

    PubMed  CAS  Google Scholar 

  • Koch, M. (1999). The neurobiology of startle. Progress in Neurobiology, 59, 107–128.

    PubMed  CAS  Google Scholar 

  • Komiya, H., & Eggermont, J. J. (2000). Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Oto-Laryngologica, 120, 750–756.

    PubMed  CAS  Google Scholar 

  • Kotak, V. C., Fujisawa, S., Lee, F. A., Karthikeyan, O., Aoki, C. & Sanes, D. H. (2005). Hearing loss raises excitability in the auditory cortex. Journal of Neuroscience, 25(15), 3908–3918.

    PubMed  CAS  Google Scholar 

  • Langers, D. R., van Dijk, P., Schoenmaker, E. S., & Backes, W. H. (2007). fMRI activation in relation to sound intensity and loudness. NeuroImage, 35(2), 709–718.

    PubMed  Google Scholar 

  • Langner, G., & Schreiner, C. E. (1988). Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. Journal of Neurophysiology, 60, 1799–1822.

    CAS  Google Scholar 

  • Langner, G., Sams, M., Heil, P., & Schulze, H. (1997). Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: Evidence from magnetoencephalography. Journal of comparative Physiology A, 181, 665–676.

    CAS  Google Scholar 

  • Langner, G., Dinse, H. R., & Godde, B. (2009). A map of periodicity orthogonal to frequency representation in the cat auditory cortex. Frontiers in Integrative Neuroscience, 3, Article 27, 1–11.

    Google Scholar 

  • –9–Levine, R. A. (1999). Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. American Journal of Otolaryngology, 20, 351–362.

    PubMed  CAS  Google Scholar 

  • Lockwood, A. H., Wack, D. S., Burkard, R. F., Coad, M. L., Reyes, S. A., Arnold, S. A., & Salvi, R. J. (2001). The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze. Neurology, 56, 472–480.

    PubMed  CAS  Google Scholar 

  • Lomber, S. G., & Malhotra, S. (2008). Double dissociation of ‘what’ and ‘where’ processing in auditory cortex. Nature Neuroscience, 11, 609–616.

    PubMed  CAS  Google Scholar 

  • Luo, F., Wang, Q., Kashani, A., & Yan, J. (2008). Corticofugal modulation of initial sound processing in the brain. Journal of Neuroscience, 28(45), 11615–11621.

    PubMed  CAS  Google Scholar 

  • Lütkenhöner, B., Krumbholz, K., Lammertmann, C., Seither- Preisler, A., Steinstrater, O., & Patterson, R. D. (2003a). Localization of primary auditory cortex in humans by magnetoencephalography. NeuroImage, 18, 58–66.

    PubMed  Google Scholar 

  • Lütkenhöner, B., Krumbholz, K., & Seither-Preisler, A. (2003b). Studies of tonotopy based on wave N100 of the auditory evoked field are problematic. NeuroImage, 19, 935–949.

    PubMed  Google Scholar 

  • Ma, X., & Suga, N. (2001). Plasticity of bat’s central auditory system evoked by focal electric stimulation of auditory and/or somatosensory cortices. Journal of Neurophysiology, 85(3), 1078–1087.

    PubMed  CAS  Google Scholar 

  • Manabe, Y., Yoshida, S., Saito, H., & Oka, H. (1997). Effects of lidocaine on saliylate-induced discharge of neurons in the inferior colliculus of the guinea pig. Hearing Research, 103, 192–198.

    PubMed  CAS  Google Scholar 

  • Mazurek, B., Olze, H., Haupt, H., & Szczepek, A. J. (2010). The more the worse: the grade of noise-induced hearing loss associates with the severity of tinnitus. International Journal of Environmental Research and Public Health, 7(8), 3071–3079.

    PubMed  Google Scholar 

  • Meyer, D. R., & Woolsey, C. N. (1952). Effects of localized cortical destruction on auditory discriminative conditioning in cat. Journal of Neurophysiology, 15, 149–162.

    PubMed  CAS  Google Scholar 

  • Milbrandt, J. C., Holder, T. M.,Wilson, M. C., Salvi, R. J., & Caspary, D. M. (2000). GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hearing Research, 147, 251–260.

    PubMed  CAS  Google Scholar 

  • Morita, T., Naito, Y., Nagamine, T., Fujiki, N., Shibasaki, H., & Ito, J. (2003).

    Google Scholar 

  • Enhanced activation of the auditory cortex in patients with inner-ear hearing impairment: A magnetoencephalographic study. Clinical Neurophysiology, 114, 851–859.

    Google Scholar 

  • Muhlnickel, W., Elbert, T., Taub, E., & Flor, H. (1998). Reorganization of auditory cortex in tinnitus. Proceedings of the National Academy of Sciences of the USA, 95, 10340–10343.

    PubMed  CAS  Google Scholar 

  • Mulheran, M. (1999). The effects of quinine on cochlear nerve fibre activity in the guinea pig. Hearing Research, 134, 145–152.

    PubMed  CAS  Google Scholar 

  • Noreña, A. J. (2011). An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neuroscience and Biobehavioral Reviews 35, 1089–1109.

    Google Scholar 

  • Noreña, A. J., & Eggermont, J. J. (2003). Changes in spontaneous neural activity immediately after an acoustic trauma: Implications for neural correlates of tinnitus. Hearing Research, 183, 137–153.

    PubMed  Google Scholar 

  • Noreña, A. J., & Eggermont, J. J. (2005). Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. Journal of Neuroscience, 25, 699–705.

    PubMed  Google Scholar 

  • Noreña, A. J., & Eggermont, J. J. (2006). Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. NeuroReport, 17, 559–563.

    PubMed  Google Scholar 

  • Noreña, A., Micheyl, C., Chery-Croze, S., & Collet, L. (2002). Psychoacoustic characterization of the tinnitus spectrum: Implications for the underlying mechanisms of tinnitus. Audiology and Neurotology, 7, 358–369.

    PubMed  Google Scholar 

  • Noreña, A. J., Tomita, M., & Eggermont, J. J. (2003). Neural changes in cat auditory cortex after a transient pure-tone trauma. Journal of Neurophysiology, 90, 2387–2401.

    PubMed  Google Scholar 

  • Noreña, A. J., Moffat, G., Blanc, J. L., Pezard, L., & Cazals, Y. (2010). Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: Salicylate and acoustic trauma. Neuroscience, 166, 1194–1209.

    PubMed  Google Scholar 

  • –Ochi, K., & Eggermont, J. J. (1996). Effects of salicylate on neural activity in cat primary auditory cortex. Hearing Research, 95, 63–76.

    PubMed  CAS  Google Scholar 

  • Ochi, K., & Eggermont, J. J. (1997). Effects of quinine on neural activity in cat primary auditory cortex. Hearing Research, 97, 105–118.

    Google Scholar 

  • Ohl, F. W., Wetzel, W., Wagner, T., Rech, A., & Scheich, H. (1999). Bilateral ablation of auditory cortex in Mongolian gerbil affects discrimination, of frequency modulated tones but not of pure tones. Learning and Memory, 6, 347–362.

    PubMed  CAS  Google Scholar 

  • Pantev, C., Hoke, M., Lütkenhöner, B., & Lehnertz, K. (1989). Tonotopic organization of the auditory cortex: Pitch versus frequency representation. Science, 246(4929), 486–488.

    PubMed  CAS  Google Scholar 

  • Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36(4), 767–776.

    PubMed  CAS  Google Scholar 

  • Paul, A. K., Lobarinas, E., Simmons, R., Wack, D., Luisi, J. C., Spernyak, J., et al. (2009). Metabolic imaging of rat brain during pharmacologically-induced tinnitus. NeuroImage, 44(2), 312–318.

    PubMed  CAS  Google Scholar 

  • Penagos, H., Melcher, J. R., & Oxenham, A. J. (2004). A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. Journal of Neuroscience, 24(30), 6810–6815.

    PubMed  CAS  Google Scholar 

  • Penner, M. J. (1980). Two-tone forward masking patterns and tinnitus. Journal of Speech and Hearing Research, 23, 779–786.

    PubMed  CAS  Google Scholar 

  • Pienkowski, M., & Eggermont, J. J. (2009). Recovery from reorganization induced in adult cat primary auditory cortex by a band-limited spectrally enhanced acoustic environment. Hearing Research, 257, 24–40.

    PubMed  Google Scholar 

  • Plewnia, C., Bartels, M., & Gerloff, C. (2003). Transient suppression of tinnitus by transcranial magnetic stimulation. Annals of Neurology, 53, 263–266.

    PubMed  Google Scholar 

  • Plewnia, C., Reimold, M., Najib, A., Brehm, B., Reischl, G., Plontke, S. K., & Gerloff, C. (2007). Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Human Brain Mapping, 28, 238–246.

    PubMed  Google Scholar 

  • Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience, 26, 4970–4982.

    PubMed  CAS  Google Scholar 

  • Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2000). Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clinical Neurophysiology, 111, 220–236.

    PubMed  CAS  Google Scholar 

  • Quaranta, N., Wagstaff, S., & Baguley, D. M. (2004). Tinnitus and cochlear implantation. International Journal of Audiology, 43, 245–251.

    PubMed  Google Scholar 

  • Rajan, R., & Irvine, D. R. (1998). Absence of plasticity of the frequency map in dorsal cochlear nucleus of adult cats after unilateral partial cochlear lesions. Journal of Comparative Neurology, 399, 35–46.

    PubMed  CAS  Google Scholar 

  • Rajan, R., Irvine, D. R. F., Wise, L. Z., & Heil, P. (1993). Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. Journal of Comparative Neurology, 338, 17–49.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., Leaver, A. M, & Mühlau, M. (2010). Tuning out the noise: Limbic-auditory interactions in tinnitus. Neuron, 66(6), 819–826.

    PubMed  CAS  Google Scholar 

  • Rescorla, R., & Wagner, A. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. Black & W. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Ruel, J., Chabbert, C., Nouvian, R., Bendris, R., Eybalin, M., Leger, C. L., et al. (2008). Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses. Journal of Neuroscience, 28, 7313–7323.

    PubMed  CAS  Google Scholar 

  • Savastano, M. (2008). Tinnitus with or without hearing loss: Are its characteristics different? European Archive of Otorhinolaryngology, 265(11), 1295–1300.

    Google Scholar 

  • Schlee, W., Hartmann, T., Langguth, B., & Weisz, N. (2009). Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neuroscience, 10, 11.

    PubMed  Google Scholar 

  • Scholl, B., & Wehr, M. (2008). Disruption of balanced cortical excitation and inhibition by acoustic trauma. Journal of Neurophysiology, 100, 646–656.

    PubMed  Google Scholar 

  • Schreiner, C. E., & Langner, G. (1988). Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. Journal of Neurophysiology, 60, 1823–1840.

    CAS  Google Scholar 

  • Seki, S., & Eggermont, J. J. (2003). Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hearing Research, 180, 28–38.

    PubMed  Google Scholar 

  • Stypulkowski, P. H. (1990). Mechanisms of salicylate ototoxicity. Hearing Research, 46, 113–146.

    PubMed  CAS  Google Scholar 

  • Suga, N., Gao, E., Zhang, Y., Ma, X., & Olsen, J. F. (2000). The corticofugal system for hearing: Recent progress. Proceedings of the National Academy of Sciences of the USA, 97, 11807–11814.

    PubMed  CAS  Google Scholar 

  • Sun, W., Lu, J., Stolzberg, D., Gray, L., Deng, A., Lobarinas, E., & Salvi, R. J. (2009). Salicylate increases the gain of the central auditory system. Neuroscience, 159(1), 325–334.

    PubMed  CAS  Google Scholar 

  • Talavage, T. M., Sereno, M. I., Melcher, J. R., Ledden, P. J., Rosen, B. R., & Dale, A. M. (2004). Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. Journal of Neurophysiology, 91(3), 1282–1296.

    PubMed  Google Scholar 

  • Talwar, S. K., Musial, P. G., & Gerstein, G. L. (2001). Role of mammalian auditory cortex in the perception of elementary sound properties. Journal of Neurophysiology, 85, 2350–2358.

    PubMed  CAS  Google Scholar 

  • Tan, A. Y., Zhang, L. I., Merzenich, M. M., & Schreiner, C. E. (2004). Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. Journal of Neurophysiology, 92, 630–643.

    PubMed  Google Scholar 

  • Tan, A. Y., Atencio, C. A., Polley, D. B., Merzenich, M. M., & Schreiner, C. E. (2007). Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons. Neuroscience, 146, 449–462.

    PubMed  CAS  Google Scholar 

  • van der Loo, E., Gais, S., Congedo, M., Vanneste, S., Plazier, M., Menovsky, T., et al. (2009). Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS One, 4(10), e7396.

    PubMed  Google Scholar 

  • Van Horn, S. C., Erisir, A., & Sherman, S. M. (2000). Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. Journal of Comparative Neurology, 416, 509–520.

    PubMed  Google Scholar 

  • Vanneste, S., Plazier, M., der Loo, E., van de Heyning, P., Congedo, M., & De Ridder, D. (2010). The neural correlates of tinnitus-related distress. NeuroImage, 52(2), 470–480.

    PubMed  Google Scholar 

  • Walhäusser-Franke, E., Mahlke, C., Oliva, R., Braun, S., Wenz, G., & Langner, G. (2003). Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus. Experimental Brain Research, 153, 649–654.

    Google Scholar 

  • Wallace, M. N., Rutkowski, R. G., Shackleton, T. M., & Palmer, A. R. (2000). Phase-locked responses to pure tones in guinea pig auditory cortex. NeuroReport, 11(18), 3989–3993.

    PubMed  CAS  Google Scholar 

  • Wallace, M. N., Coomber, B., Sumner, C. J., Grimsley, J. M., Shackleton, T. M., & Palmer, A. R. (2011). Location of cells giving phase-locked responses to pure tones in the primary auditory cortex. Hearing Research, 274, 142–151.

    PubMed  CAS  Google Scholar 

  • Wang, Z., Ruan, Q., & Wang, D. (2005). Different effects of intracochlear sensory and neuronal injury stimulation on expression of synaptic N-methyl-d-aspartate receptors in the auditory cortex of rats in vivo. Acta Oto-Laryngologica, 125, 1145–1151.

    PubMed  CAS  Google Scholar 

  • Wehr, M., & Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442–446.

    PubMed  CAS  Google Scholar 

  • Weisz, N., Moratti, S., Meinzer, M., Dohrmann, K., & Elbert, T. (2005a). Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Medicine, 2, e153.

    PubMed  Google Scholar 

  • Weisz, N.,Wienbruch, C., Dohrmann, K., & Elbert, T. (2005b). Neuromagnetic indicators of auditory cortical reorganization of tinnitus. Brain, 28, 2722–2731.

    Google Scholar 

  • Weisz, N., Muller, S., Schlee, W., Dohrmann, K., Hartmann, T., & Elbert, T. (2007). The neural code of auditory phantom perception. Journal of Neuroscience, 27, 1479–1484.

    PubMed  CAS  Google Scholar 

  • Wienbruch, C., Paul, I., Weisz, N., Elbert, T., & Roberts, L. E. (2006). Frequency organization of the 40-Hz auditory steadystate response in normal hearing and in tinnitus. NeuroImage, 33, 180–194.

    PubMed  Google Scholar 

  • Winer, J. A., & Lee, C. C. (2007). The distributed auditory cortex. Hearing Research, 229(1–2), 3–13.

    PubMed  Google Scholar 

  • Wu, G. K., Li, P., Tao, H. W., & Zhang, L. I. (2006). Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning Neuron, 52, 705–715.

    CAS  Google Scholar 

  • Xiao, Z., & Suga, N. (2002). Modulation of cochlear hair cells by the auditory cortex in the ­mustached bat. Nature Neuroscience, 5(1), 57–63.

    PubMed  CAS  Google Scholar 

  • Yan, J., & Ehret, G. (2001). Corticofugal reorganization of the midbrain tonotopic map in mice. NeuroReport, 12(15), 3313–3316.

    PubMed  CAS  Google Scholar 

  • Yan, J., & Ehret, G. (2002). Corticofugal modulation of midbrain sound processing in the house mouse. European Journal of Neuroscience, 16(1), 119–128.

    PubMed  Google Scholar 

  • Yan, W., & Suga, N. (1998). Corticofugal modulation of the midbrain frequency map in the bat auditory system. Nature Neuroscience, 1, 54–58.

    PubMed  CAS  Google Scholar 

  • Yan, J., Zhang, Y., & Ehret, G. (2005). Corticofugal shaping of frequency tuning curves in the central nucleus of the inferior colliculus of mice. Journal of Neurophysiology, 93(1), 71–83.

    PubMed  Google Scholar 

  • Yang, G., Lobarinas, E., Zhang, L., Turner, J., Stolzberg, D., Salvi, R., & Sun, W. (2007). Salicylate induced tinnitus: Behavioral measures and neural activity in auditory cortex of awake rats. Hearing Research, 226, 244–253.

    PubMed  CAS  Google Scholar 

  • Zhang, L. I., Tan, A. Y. Y., Schreiner, C. E., & Merzenich, M. M. (2003). Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature, 424, 201–205.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Yang, P., Cao, Y., Qin, L., & Sato, Y. (2011). Salicylate induced neural changes in the primary auditory cortex of awake cats. Neuroscience, 172, 232–245.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos J. Eggermont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eggermont, J.J. (2012). Cortex: Way Station or Locus of the Tinnitus Percept?. In: Eggermont, J., Zeng, FG., Popper, A., Fay, R. (eds) Tinnitus. Springer Handbook of Auditory Research, vol 44. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3728-4_7

Download citation

Publish with us

Policies and ethics