Advertisement

Tinnitus pp 97-119 | Cite as

Dorsal Cochlear Nucleus: Somatosensory–Auditory Interactions in Tinnitus

  • Susanne Dehmel
  • Seth D. Koehler
  • Susan E. Shore
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 44)

Abstract

In normal individuals, phantom auditory sensations like tinnitus can develop during head, neck, and jaw muscle contractions (Levine et al., 2003). In more than two thirds of people with chronic tinnitus, active and passive manipulations of these regions, such as jaw clenching or tensing the neck muscles, can alter the loudness, pitch, and location of the tinnitus (Pinchoff et al., 1998; Levine, 1999), and tinnitus can occur after somatosensory insults (Rubinstein et al., 1990). These observations led to the definition of a “somatic tinnitus” syndrome (Levine et al., 2003) in which an imbalance of bimodal somatosensory–auditory integration was hypothesized as its underlying cause (Levine, 1999; Shore et al., 2007). After noise-induced tinnitus, somatic tinnitus is the second most common type of tinnitus (Eggermont, 2005).

Keywords

Trigeminal Ganglion Inferior Colliculus Noise Exposure Cochlear Nucleus Dorsal Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support was received from NIH R01 DC004825 to S. E. Shore, the Tinnitus Research Consortium, and T32 DC001 to S. D. Koehler. The authors thank Ben Yates for expert assistance with illustrations.

Abbreviations

DCN

dorsal cochlear nucleus

DRG

dorsal root ganglion

fMRI

functional magnetic resonance imaging

GCD

granule cell domain

IC

inferior colliculus

MSN

medullary somatosensory nuclei

SFR

spontaneous firing rate

SP5

spinal trigeminal nucleus

Sp5

spinal trigeminal tract

TG

trigeminal ganglion

VCN

ventral cochlear nucleus

VGLUT

vesicular glutamate transporter

References

  1. Allman BL, Keniston LP, Meredith MA (2009) Adult deafness induces somatosensory conversion of ferret auditory cortex. Proceedings of the National Academy of Sciences of the USA 106(14):5925–5930PubMedCrossRefGoogle Scholar
  2. Bauer CA, Turner JG, Caspary DM, Myers KS, Brozoski TJ (2008) Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. Journal of Neuroscience Research 86(11):2564–2578PubMedCrossRefGoogle Scholar
  3. Bell, C., Bodznick, D., Montgomery, J., & Bastian, J. (1997). The generation and subtraction of sensory expectations within cerebellum-like structures. Brain, Behavior and Evolution, 50(Supplement 1), 17–31.Google Scholar
  4. Bledsoe SC Jr, Koehler S, Tucci DL, Zhou J, Le Prell C, Shore SE (2009) Ventral cochlear nucleus responses to contralateral sound are mediated by commissural and olivocochlear pathways. Journal of Neurophysiology 102(2):886–900PubMedCrossRefGoogle Scholar
  5. Brozoski, T., Bauer, C., & Caspary, D. (2002). Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus.PG-2383-90. Journal of Neuroscience 22(6):2383–2390Google Scholar
  6. Caperton KK, Thompson AM (2011) Activation of serotonergic neurons during salicylate-induced tinnitus. Otology & Neurotology 32(2):301–307CrossRefGoogle Scholar
  7. Chen CC, Yang CH, Huang CC, Hsu KS (2010) Acute stress impairs hippocampal mossy fiber-CA3 long-term potentiation by enhancing cAMP-specific phosphodiesterase 4 activity. Neuropsychopharmacology 35(7):1605–1617PubMedCrossRefGoogle Scholar
  8. Davis KA, Miller RL, Young ED (1996) Effects of somatosensory and parallel-fiber stimulation on neurons in dorsal cochlear nucleus. Journal of Neurophysiology 76(5):3012–3024PubMedGoogle Scholar
  9. Dehmel S, Cui YL, Shore SE (2008) Cross-modal interactions of auditory and somatic inputs in the brainstem and midbrain and their imbalance in tinnitus and deafness. American Journal of Audiology 17(2):S193–209PubMedCrossRefGoogle Scholar
  10. Dehmel S, Pradhan S, Parikh M, Anderson K, Shore SE (2012) Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus--possible basis for tinnitus-related hyperactivity? Journal of Neuroscience 32:1660–71Google Scholar
  11. Dong S, Mulders WH, Rodger J, Woo S, Robertson D (2011) Acoustic trauma evokes hyperactivity and changes in gene expression in guinea-pig auditory brainstem. European Journal of Neuroscience 31(9):1616–1628Google Scholar
  12. Eggermont JJ (2005) Tinnitus: Neurobiological substrates. Drug Discovery Today 10(19): 1283–1290PubMedCrossRefGoogle Scholar
  13. Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends in Neurosciences 27(11):676–682PubMedCrossRefGoogle Scholar
  14. Finlayson PG, Kaltenbach JA (2009) Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hearing Research 256(1–2):104–117PubMedCrossRefGoogle Scholar
  15. Fremeau RT Jr, Kam K, Qureshi T, Johnson J, Copenhagen DR, Storm-Mathisen J et al (2004) Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science 304(5678):1815–1819PubMedCrossRefGoogle Scholar
  16. Fujino K, Oertel D (2003) Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proceedings of the National Academy of Sciences of the USA 100(1):265–270PubMedCrossRefGoogle Scholar
  17. Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M et al (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. Journal of Neuroscience 22(13):5442–5451PubMedGoogle Scholar
  18. Haenggeli CA, Pongstaporn T, Doucet JR, Ryugo DK (2005) Projections from the spinal trigeminal nucleus to the cochlear nucleus in the rat. Journal of Comparative Neurology 484(2): 191–205PubMedCrossRefGoogle Scholar
  19. Ito T, Tiede M, Ostry DJ (2009) Somatosensory function in speech perception. Proceedings of the National Academy of Sciences of the USA 106(4):1245–1248PubMedCrossRefGoogle Scholar
  20. Itoh K, Kamiya H, Mitani A, Yasui Y, Takada M, Mizuno N (1987) Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Research 400(1):145–150PubMedCrossRefGoogle Scholar
  21. Jastreboff PJ, Brennan JF, Coleman JK, Sasaki CT (1988) Phantom auditory sensation in rats: An animal model for tinnitus. Behavioral Neuroscience 102(6):811–822PubMedCrossRefGoogle Scholar
  22. Kaltenbach JA, Afman CE (2000) Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: A physiological model for tinnitus. Hearing Research 140(1–2):165–172PubMedCrossRefGoogle Scholar
  23. Kaltenbach JA, Godfrey DA (2008) Dorsal cochlear nucleus hyperactivity and tinnitus: are they related? American Journal of Audiology 17(2):148–161CrossRefGoogle Scholar
  24. Kaltenbach JA, McCaslin DL (1996) Increases in spontaneous activity in the dorsal cochlear nucleus following exposure to high intensity sound: A possible neural correlate of tinnitus. Auditory Neuroscience 3(1):57–78Google Scholar
  25. Kaltenbach JA, Rachel JD, Mathog TA, Zhang J, Falzarano PR, Lewandowski M (2002) Cisplatin-induced hyperactivity in the dorsal cochlear nucleus and its relation to outer hair cell loss: relevance to tinnitus. Journal of Neurophysiology 88(2):699–714PubMedGoogle Scholar
  26. Kaltenbach JA, Zacharek MA, Zhang J, Frederick S (2004) Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neuroscience Letters 355(1–2):121–125PubMedCrossRefGoogle Scholar
  27. Kaneko T, Fujiyama F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. Journal of Comparative Neurology 444(1):39–62PubMedCrossRefGoogle Scholar
  28. Kanold PO, Davis KA, Young ED (2011) Somatosensory context alters auditory responses in the cochlear nucleus. Journal of Neurophysiology 105(3):1063–1070PubMedCrossRefGoogle Scholar
  29. Koehler SD, Pradhan S, Manis PB, Shore SE (2011) Somatosensory inputs modify auditory spike timing in dorsal cochlear nucleus principal cells. European Journal of Neuroscience 33(3):409–420PubMedCrossRefGoogle Scholar
  30. Lanting CP, de Kleine E, Eppinga RN, van Dijk P (2010) Neural correlates of human somatosensory integration in tinnitus. Hearing Research 267(1–2):78–88PubMedCrossRefGoogle Scholar
  31. Levine RA (1999) Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. American Journal of Otolaryngology 20(6):351–362PubMedCrossRefGoogle Scholar
  32. Levine RA, Abel M, Cheng H (2003) CNS somatosensory-auditory interactions elicit or modulate tinnitus. Experimental Brain Research 153(4):643–648CrossRefGoogle Scholar
  33. Lewald J, Karnath HO, Ehrenstein WH (1999) Neck-proprioceptive influence on auditory lateralization. Experimental Brain Research 125(4):389–396CrossRefGoogle Scholar
  34. Masuda N, Kori H (2007) Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. Journal of Computational Neuroscience 22(3):327–345PubMedCrossRefGoogle Scholar
  35. May BJ (2000) Role of the dorsal cochlear nucleus in the sound localization behavior of cats. Hearing Research 148(1–2):74–87PubMedCrossRefGoogle Scholar
  36. McBain CJ (2008) Differential mechanisms of transmission and plasticity at mossy fiber synapses. Progress in Brain Research 169:225–240PubMedCrossRefGoogle Scholar
  37. Moore BC, Vinay, & Sandhya. (2010) The relationship between tinnitus pitch and the edge frequency of the audiogram in individuals with hearing impairment and tonal tinnitus. Hearing Research 261(1–2):51–56Google Scholar
  38. Mulders WH, Robertson D (2009) Hyperactivity in the auditory midbrain after acoustic trauma: Dependence on cochlear activity. Neuroscience 164(2):733–746PubMedCrossRefGoogle Scholar
  39. Nazruddin S, S., Shirana, Y., Yamauchi, K., & Shigenaga, Y. (1989) The cells of origin of the hypoglossal afferent nerves and central projections in the cat. Brain Research 490(2):219–235Google Scholar
  40. Norena A, Micheyl C, Chery-Croze S, Collet L (2002) Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiology and Neuro-Otology 7(6):358–369PubMedCrossRefGoogle Scholar
  41. O’Donahue H, Campagnloa L, Manis PB (2010) Spontaneous calcium signals in the dorsal cochlear nucleus after noise damage. Abstracts of the Association for Research in Otolaryngology 33:240Google Scholar
  42. Oertel D, Young ED (2004) What’s a cerebellar circuit doing in the auditory system? Trends in Neurosciences 27(2):104–110PubMedCrossRefGoogle Scholar
  43. Pfaller K, Arvidsson J (1988) Central distribution of trigeminal and upper cervical primary afferents in the rat studied by anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin. Journal of Comparative Neurology 268(1):91–108PubMedCrossRefGoogle Scholar
  44. Pinchoff RJ, Burkard RF, Salvi RJ, Coad ML, Lockwood AH (1998) Modulation of tinnitus by voluntary jaw movements. American Journal of Otology 19(6):785–789PubMedGoogle Scholar
  45. Roberts LE, Moffat G, Baumann M, Ward LM, Bosnyak DJ (2008) Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. Journal of the Association for Research in Otolaryngology 9(4):417–435PubMedCrossRefGoogle Scholar
  46. Roberts PD, Portfors CV, Sawtell N, Felix R (2006) Model of auditory prediction in the dorsal cochlear nucleus via spike-timing dependent plasticity. Neurocomputing 69(10–12):1191–1194CrossRefGoogle Scholar
  47. Romfh JH, Capra NF, Gatipon GB (1979) Trigeminal nerve and temporomandibular joint of the cat: A horseradish peroxidase study. Experimental Neurology 65(1):99–106PubMedCrossRefGoogle Scholar
  48. Rubinstein B, Axelsson A, Carlsson GE (1990) Prevalence of signs and symptoms of craniomandibular disorders in tinnitus patients. Journal of Craniomandibular Disorders 4(3):186–192PubMedGoogle Scholar
  49. Saade NE, Frangieh AS, Atweh SF, Jabbur SJ (1989) Dorsal column input to cochlear neurons in decerebrate-decerebellate cats. Brain Research 486(2):399–402PubMedCrossRefGoogle Scholar
  50. Sanchez TG, Guerra GC, Lorenzi MC, Brandao AL, Bento RF (2002) The influence of voluntary muscle contractions upon the onset and modulation of tinnitus. Audiology and Neuro-Otology 7(6):370–375PubMedCrossRefGoogle Scholar
  51. Schaette R, Kempter R (2009) Predicting tinnitus pitch from patients’ audiograms with a computational model for the development of neuronal hyperactivity. Journal of Neurophysiology 101(6):3042–3052PubMedCrossRefGoogle Scholar
  52. Schurmann M, Caetano G, Jousmaki V, Hari R (2004) Hands help hearing: facilitatory audiotactile interaction at low sound-intensity levels. Journal of the Acoustical Society of America 115(2):830–832PubMedCrossRefGoogle Scholar
  53. Seki S, Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hearing Research 180(1–2):28–38PubMedCrossRefGoogle Scholar
  54. Shore S, Zhou J, Koehler S (2007) Neural mechanisms underlying somatic tinnitus. Progress in Brain Research 166:107–123PubMedCrossRefGoogle Scholar
  55. Shore SE (2005) Multisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulation. European Journal of Neuroscience 21(12):3334–3348PubMedCrossRefGoogle Scholar
  56. Shore SE, Zhou J (2006) Somatosensory influence on the cochlear nucleus and beyond. Hearing Research 216–217:90–99PubMedCrossRefGoogle Scholar
  57. Shore SE, Vass Z, Wys NL, Altschuler RA (2000) Trigeminal ganglion innervates the auditory brainstem. Journal of Comparative Neurology 419(3):271–285PubMedCrossRefGoogle Scholar
  58. Shore SE, Koehler S, Oldakowski M, Hughes LF, Syed S (2008) Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. European Journal of Neuroscience 27(1):155–168PubMedCrossRefGoogle Scholar
  59. Sola E, Prestori F, Rossi P, Taglietti V, D’Angelo E (2004) Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum. Journal of Physiology 557(Pt 3):843–861PubMedCrossRefGoogle Scholar
  60. Takahashi YK, Kori H, Masuda N (2009) Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity. Physical Review E 79(5 Pt 1):051904CrossRefGoogle Scholar
  61. Takemura M, Sugimoto T, Shigenaga Y (1991) Difference in central projection of primary afferents innervating facial and intraoral structures in the rat. Experimental Neurology 111(3):324–331PubMedCrossRefGoogle Scholar
  62. Thompson AM, Thompson GC (2001) Serotonin projection patterns to the cochlear nucleus. Brain Research 907(1–2):195–207PubMedCrossRefGoogle Scholar
  63. Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: A potential novel screening tool. Behavioral Neuroscience 120(1):188–195PubMedCrossRefGoogle Scholar
  64. Tzounopoulos T, Kim Y, Oertel D, Trussell LO (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nature Neuroscience 7(7):719–725PubMedCrossRefGoogle Scholar
  65. Tzounopoulos T, Rubio ME, Keen JE, Trussell LO (2007) Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron 54(2):291–301PubMedCrossRefGoogle Scholar
  66. Varoqui H, Schäfer MK, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. Journal of Neuroscience 22(1):142–155PubMedGoogle Scholar
  67. Wallen-Mackenzie A, Wootz H, Englund H (2010) Genetic inactivation of the vesicular glutamate transporter 2 (VGLUT2) in the mouse: what have we learnt about functional glutamatergic neurotransmission? Upsala Journal of Medical Sciences 115(1):11–20PubMedCrossRefGoogle Scholar
  68. Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM (2009) Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 164(2):747–759PubMedCrossRefGoogle Scholar
  69. Wei L, Ding D, Sun W, Xu-Friedman MA, Salvi R (2010) Effects of sodium salicylate on spontaneous and evoked spike rate in the dorsal cochlear nucleus. Hearing Research 267(1–2):54–60PubMedCrossRefGoogle Scholar
  70. Weinberg RJ, Rustioni A (1987) A cuneocochlear pathway in the rat. Neuroscience 20(1):209–219PubMedCrossRefGoogle Scholar
  71. Wolff A, Kunzle H (1997) Cortical and medullary somatosensory projections to the cochlear nuclear complex in the hedgehog tenrec. Neuroscience Letters 221(2–3):125–128PubMedCrossRefGoogle Scholar
  72. Wright DD, Ryugo DK (1996) Mossy fiber projections from the cuneate nucleus to the cochlear nucleus in the rat. Journal of Comparative Neurology 365(1):159–172PubMedCrossRefGoogle Scholar
  73. Young ED, Nelken I, Conley RA (1995) Somatosensory effects on neurons in dorsal cochlear nucleus. Journal of Neurophysiology 73(2):743–765PubMedGoogle Scholar
  74. Zacharek MA, Kaltenbach JA, Mathog TA, Zhang J (2002) Effects of cochlear ablation on noise induced hyperactivity in the hamster dorsal cochlear nucleus: Implications for the origin of noise induced tinnitus. Hearing Research 172(1–2):137–143PubMedCrossRefGoogle Scholar
  75. Zeng C, Nannapaneni N, Zhou J, Hughes LF, Shore S (2009) Cochlear damage changes the distribution of vesicular glutamate transporters associated with auditory and nonauditory inputs to the cochlear nucleus. Journal of Neuroscience 29(13):4210–4217PubMedCrossRefGoogle Scholar
  76. Zeng C, Shroff H, Shore SE (2011) Cuneate and spinal trigeminal nucleus projections to the cochlear nucleus are differentially associated with vesicular glutamate transporter-2. Neuroscience 176:142–151PubMedCrossRefGoogle Scholar
  77. Zhan X, Pongstaporn T, Ryugo DK (2006) Projections of the second cervical dorsal root ganglion to the cochlear nucleus in rats. Journal of Comparative Neurology 496(3):335–348PubMedCrossRefGoogle Scholar
  78. Zhang J, Guan Z (2008) Modulatory effects of somatosensory electrical stimulation on neural activity of the dorsal cochlear nucleus of hamsters. Journal of Neuroscience Research 86(5):1178–1187PubMedCrossRefGoogle Scholar
  79. Zheng Y, Seung Lee H, Smith PF, Darlington CL (2006) Neuronal nitric oxide synthase expression in the cochlear nucleus in a salicylate model of tinnitus. Brain Research 1123(1):201–206PubMedCrossRefGoogle Scholar
  80. Zheng Y, Baek JH, Smith PF, Darlington CL (2007) Cannabinoid receptor down-regulation in the ventral cochlear nucleus in a salicylate model of tinnitus. Hearing Research 228(1–2):105–111PubMedCrossRefGoogle Scholar
  81. Zhou J, Shore S (2004) Projections from the trigeminal nuclear complex to the cochlear nuclei: a retrograde and anterograde tracing study in the guinea pig. Journal of Neuroscience Research 78(6):901–907PubMedCrossRefGoogle Scholar
  82. Zhou J, Nannapaneni N, Shore S (2007) Vessicular glutamate transporters 1 and 2 are differentially associated with auditory nerve and spinal trigeminal inputs to the cochlear nucleus. Journal of Comparative Neurology 500(4):777–787PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Susanne Dehmel
    • 1
  • Seth D. Koehler
    • 2
  • Susan E. Shore
    • 3
  1. 1.Kresge Hearing Research Institute, Departments of OtolaryngologyUniversity of MichiganAnn ArborUSA
  2. 2.Kresge Hearing Research Institute, Departments of Otolaryngology and Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Kresge Hearing Research Institute, Departments of Otolaryngology and Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations