Mitochondrial DNA Multiple Deletion Syndromes, Autosomal Dominant and Recessive (POLG, POLG2, TWINKLE and ANT1)

Chapter

Abstract

Mitochondrial DNA (mtDNA) replicates continuously. The minimal mitochondrial replisome consists of the DNA polymerase gamma (pol g), the mtDNA helicase Twinkle, and the mitochondrial single-stranded binding protein, all encoded by nuclear genes. Pol g is responsible for mtDNA replication and repair and is composed by a catalytic subunit (POLG) and two identical accessory subunits, POLG2. Mutations in POLG, POLG2, and Twinkle result in multiple mtDNA deletions and/or mtDNA depletion, causing disease. Multiple mtDNA deletions accumulate along the years and usually give rise to late-onset disease. Autosomal-dominant mutations in POLG and POLG2 lead to progressive external ophthalmoplegia (PEO) that can occur as sole clinical manifestation of the disease or in association with other clinical features, such as myopathy, exercise intolerance, or predominantly axonal peripheral neuropathy. Autosomal-recessive POLG mutations lead to a broader spectrum of clinical phenotypes ranging from Alpers syndrome to ataxia-neuropathy syndrome with or without epilepsy to PEO. Heterozygous mutations in Twinkle cause PEO, while recessive mutations in this protein result in early-onset ataxia and epileptic encephalopathy, associated with mtDNA depletion. In addition to the genes encoding proteins involved in mtDNA replication, mutations in nucleotide translocator 1 (ANT1) also result in multiple mtDNA deletions responsible for PEO.

Keywords

ANT1 Ataxia C10ORF2 Mitochondrial myopathy PEO POLG POLG2 Polymerase gamma SLC25A Twinkle 

Notes

Acknowledgments

Margherita Milone thanks Lee-Jun Wong for her constructive comments on the manuscript. Margherita Milone receives research support by the Mayo Clinic CTSA through NIH/NCRR grant number UL1 RR024150.

References

  1. 1.
    Masuyama M, Iida R, Takatsuka H, Yasuda T, Matsuki T (2005) Quantitative change in mitochondrial DNA content in various mouse tissues during aging. Biochimica Et Biophysica Acta 1723(1–3):302–308PubMedCrossRefGoogle Scholar
  2. 2.
    Shoubridge EA, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 77:87–111PubMedCrossRefGoogle Scholar
  3. 3.
    Korhonen JA, Pham XH, Pellegrini M, Falkenberg M (2004) Reconstitution of a minimal mtDNA replisome in vitro. EMBO J 23(12):2423–2429PubMedCrossRefGoogle Scholar
  4. 4.
    Kaukonen J, Juselius JK, Tiranti V et al (2000) Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289(5480):782–785PubMedCrossRefGoogle Scholar
  5. 5.
    Lee YS, Kennedy WD, Yin YW (2009) Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell 139(2):312–324PubMedCrossRefGoogle Scholar
  6. 6.
    Lee YS, Lee S, Demeler B, Molineux IJ, Johnson KA, Yin YW (2010) Each monomer of the dimeric accessory protein for human mitochondrial DNA polymerase has a distinct role in conferring processivity. J Biol Chem 285(2):1490–1499PubMedCrossRefGoogle Scholar
  7. 7.
    Johnson AA, Johnson KA (2001) Exonuclease proofreading by human mitochondrial DNA polymerase. J Biol Chem 276(41):38097–38107PubMedGoogle Scholar
  8. 8.
    Johnson AA, Tsai Y, Graves SW, Johnson KA (2000) Human mitochondrial DNA polymerase holoenzyme: reconstitution and characterization. Biochemistry 39(7):1702–1708PubMedCrossRefGoogle Scholar
  9. 9.
    Di Re M, Sembongi H, He J et al (2009) The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res 37(17):5701–5713CrossRefGoogle Scholar
  10. 10.
    Hudson G, Chinnery PF (2006) Mitochondrial DNA polymerase-gamma and human disease. Hum Mol Genet 15(Spec No 2):R244–R252PubMedCrossRefGoogle Scholar
  11. 11.
    Van Goethem G, Luoma P, Rantamaki M et al (2004) POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement. Neurology 63(7):1251–1257PubMedCrossRefGoogle Scholar
  12. 12.
    Milone M, Brunetti-Pierri N, Tang LY et al (2008) Sensory ataxic neuropathy with ophthalmoparesis caused by POLG mutations. Neuromuscul Disord 18(8):626–632PubMedCrossRefGoogle Scholar
  13. 13.
    Tang S, Wang J, Lee NC et al (2011) Mitochondrial DNA polymerase gamma mutations: an ever expanding molecular and clinical spectrum. J Med Genet 48(10):669–681PubMedCrossRefGoogle Scholar
  14. 14.
    Wong LJ, Naviaux RK, Brunetti-Pierri N et al (2008) Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum Mutat 29(9):E150–E172PubMedCrossRefGoogle Scholar
  15. 15.
    Fadic R, Russell JA, Vedanarayanan VV, Lehar M, Kuncl RW, Johns DR (1997) Sensory ataxic neuropathy as the presenting feature of a novel mitochondrial disease. Neurology 49(1):239–245PubMedCrossRefGoogle Scholar
  16. 16.
    Van Goethem G, Martin JJ, Dermaut B et al (2003) Recessive POLG mutations presenting with sensory and ataxic neuropathy in compound heterozygote patients with progressive external ophthalmoplegia. Neuromuscul Disord 13(2):133–142PubMedCrossRefGoogle Scholar
  17. 17.
    Hakonen AH, Heiskanen S, Juvonen V et al (2005) Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet 77(3):430–441PubMedCrossRefGoogle Scholar
  18. 18.
    Lax NZ, Whittaker RG, Hepplewhite PD et al (2012) Sensory neuronopathy in patients harbouring recessive polymerase gamma mutations. Brain: J Neurol 135(Pt 1):62–71CrossRefGoogle Scholar
  19. 19.
    Schicks J, Synofzik M, Schulte C, Schols L (2010) POLG, but not PEO1, is a frequent cause of cerebellar ataxia in Central Europe. Movement Disord: Official J Movement Disord Soc 25(15):2678–2682CrossRefGoogle Scholar
  20. 20.
    Lax NZ, Hepplewhite PD, Reeve AK et al (2012) Cerebellar ataxia in patients with mitochondrial DNA disease: a molecular clinicopathological study. J Neuropathol Exp Neurol 71(2):148–161PubMedCrossRefGoogle Scholar
  21. 21.
    Harrower T, Stewart JD, Hudson G et al (2008) POLG1 mutations manifesting as autosomal recessive axonal Charcot-Marie-Tooth disease. Arch Neurology 65(1):133–136CrossRefGoogle Scholar
  22. 22.
    Mehta AR, Fox SH, Tarnopolsky M, Yoon G (2011) Mitochondrial mimicry of multiple system atrophy of the cerebellar subtype. Movement Disord: Official J Movement Disorder Soc 26(4):753–755CrossRefGoogle Scholar
  23. 23.
    Milone M, Wang J, Liewluck T, Chen LC, Leavitt JA, Wong LJ (2011) Novel POLG splice site mutation and optic atrophy. Arch Neurol 68(6):806–811PubMedCrossRefGoogle Scholar
  24. 24.
    Horvath R, Hudson G, Ferrari G et al (2006) Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain 129(Pt 7):1674–1684PubMedCrossRefGoogle Scholar
  25. 25.
    Hinnell C, Haider S, Delamont S, Clough C, Hadzic N, Samuel M (2012) Dystonia in mitochondrial spinocerebellar ataxia and epilepsy syndrome associated with novel recessive POLG mutations. Movement Disord: Official J Movement Disorder Soc 27(1):162–163CrossRefGoogle Scholar
  26. 26.
    Deschauer M, Tennant S, Rokicka A et al (2007) MELAS associated with mutations in the POLG1 gene. Neurology 68(20):1741–1742PubMedCrossRefGoogle Scholar
  27. 27.
    Tang S, Dimberg EL, Milone M, Wong LJ (2011) Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)-like phenotype: an expanded clinical spectrum of POLG1 mutations. J NeurolGoogle Scholar
  28. 28.
    Engelsen BA, Tzoulis C, Karlsen B et al (2008) POLG1 mutations cause a syndromic epilepsy with occipital lobe predilection. Brain 131(Pt 3):818–828PubMedCrossRefGoogle Scholar
  29. 29.
    Tzoulis C, Engelsen BA, Telstad W et al (2006) The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain 129(Pt 7):1685–1692PubMedCrossRefGoogle Scholar
  30. 30.
    Kollberg G, Moslemi AR, Darin N et al (2006) POLG1 mutations associated with progressive encephalopathy in childhood. J Neuropathol Exp Neurol 65(8):758–768PubMedCrossRefGoogle Scholar
  31. 31.
    Uusimaa J, Hinttala R, Rantala H et al (2008) Homozygous W748S mutation in the POLG1 gene in patients with juvenile-onset Alpers syndrome and status epilepticus. Epilepsia 49(6):1038–1045PubMedCrossRefGoogle Scholar
  32. 32.
    Saneto RP, Lee IC, Koenig MK et al (2010) POLG DNA testing as an emerging standard of care before instituting valproic acid therapy for pediatric seizure disorders. Seizure 19(3):140–146PubMedCrossRefGoogle Scholar
  33. 33.
    Chinnery PF, Zeviani M (2008) 155th ENMC workshop: polymerase gamma and disorders of mitochondrial DNA synthesis, 21–23 September 2007, Naarden, The Netherlands. Neuromuscul Disord. 18(3):259–267PubMedCrossRefGoogle Scholar
  34. 34.
    Visser NA, Braun KP, Leijten FS, van Nieuwenhuizen O, Wokke JH, van den Bergh WM (2011) Magnesium treatment for patients with refractory status epilepticus due to POLG1-mutations. J Neurol 258(2):218–222PubMedCrossRefGoogle Scholar
  35. 35.
    Van Goethem G, Dermaut B, Lofgren A, Martin JJ, Van Broeckhoven C (2001) Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 28(3):211–212PubMedCrossRefGoogle Scholar
  36. 36.
    Spelbrink JN, Li FY, Tiranti V et al (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28(3):223–231PubMedCrossRefGoogle Scholar
  37. 37.
    Longley MJ, Clark S, Yu Wai Man C et al (2006) Mutant POLG2 disrupts DNA polymerase gamma subunits and causes progressive external ophthalmoplegia. Am J Human Genet 78(6):1026–1034CrossRefGoogle Scholar
  38. 38.
    Hudson G, Amati-Bonneau P, Blakely EL et al (2008) Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 131(Pt 2):329–337PubMedCrossRefGoogle Scholar
  39. 39.
    Goffart S, Cooper HM, Tyynismaa H, Wanrooij S, Suomalainen A, Spelbrink JN (2009) Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling. Hum Mol Genet 18(2):328–340PubMedCrossRefGoogle Scholar
  40. 40.
    Tyynismaa H, Sun R, Ahola-Erkkila S et al (2012) Thymidine kinase 2 mutations in autosomal recessive progressive external ophthalmoplegia with multiple mitochondrial DNA deletions. Hum Mol Genet 21(1):66–75PubMedCrossRefGoogle Scholar
  41. 41.
    Lamantea E, Tiranti V, Bordoni A et al (2002) Mutations of mitochondrial DNA polymerase gammaA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Annals Neurol 52(2):211–219CrossRefGoogle Scholar
  42. 42.
    Luoma P, Melberg A, Rinne JO et al (2004) Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 364(9437):875–882PubMedCrossRefGoogle Scholar
  43. 43.
    Horvath R, Hudson G, Ferrari G et al (2006) Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain: J Neurol 129(Pt 7):1674–1684CrossRefGoogle Scholar
  44. 44.
    Pagnamenta AT, Hargreaves IP, Duncan AJ et al (2006) Phenotypic variability of mitochondrial disease caused by a nuclear mutation in complex II. Mol Genet Metab 89(3):214–221PubMedCrossRefGoogle Scholar
  45. 45.
    Echaniz-Laguna A, Chassagne M, de Seze J et al (2010) POLG1 variations presenting as multiple sclerosis. Arch Neurol 67(9):1140–1143PubMedCrossRefGoogle Scholar
  46. 46.
    Van Goethem G, Schwartz M, Lofgren A, Dermaut B, Van Broeckhoven C, Vissing J (2003) Novel POLG mutations in progressive external ophthalmoplegia mimicking mitochondrial neurogastrointestinal encephalomyopathy. Eur J Hum Genet 11(7):547–549PubMedCrossRefGoogle Scholar
  47. 47.
    Giordano C, Pichiorri F, Blakely EL et al (2010) Isolated distal myopathy of the upper limbs associated with mitochondrial DNA depletion and polymerase gamma mutations. Arch Neurol 67(9):1144–1146PubMedCrossRefGoogle Scholar
  48. 48.
    Giordano C, Powell H, Leopizzi M et al (2009) Fatal congenital myopathy and gastrointestinal pseudo-obstruction due to POLG1 mutations. Neurol 72(12):1103–1105CrossRefGoogle Scholar
  49. 49.
    Tzoulis C, Papingji M, Fiskestrand T, Roste LS, Bindoff LA (2009) Mitochondrial DNA depletion in progressive external ophthalmoplegia caused by POLG1 mutations. Acta Neurol Scand Suppl 2009(189):38–41CrossRefGoogle Scholar
  50. 50.
    Isohanni P, Hakonen AH, Euro L et al (2011) POLG1 manifestations in childhood. Neurology 76(9):811–815PubMedCrossRefGoogle Scholar
  51. 51.
    Winterthun S, Ferrari G, He L et al (2005) Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase gamma mutations. Neurol 64(7):1204–1208CrossRefGoogle Scholar
  52. 52.
    de Vries MC, Rodenburg RJ, Morava E et al (2007) Multiple oxidative phosphorylation deficiencies in severe childhood multi-system disorders due to polymerase gamma (POLG1) mutations. Eur J Pediat 166(3):229–234CrossRefGoogle Scholar
  53. 53.
    Trifunovic A, Wredenberg A, Falkenberg M et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nat 429(6990):417–423CrossRefGoogle Scholar
  54. 54.
    Bailey LJ, Cluett TJ, Reyes A et al (2009) Mice expressing an error-prone DNA polymerase in mitochondria display elevated replication pausing and chromosomal breakage at fragile sites of mitochondrial DNA. Nucleic Acids Res 37(7):2327–2335PubMedCrossRefGoogle Scholar
  55. 55.
    Ahlqvist KJ, Hamalainen RH, Yatsuga S et al (2012) Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. Cell Metab 15(1):100–109PubMedCrossRefGoogle Scholar
  56. 56.
    Walter MC, Czermin B, Muller-Ziermann S et al (2010) Late-onset ptosis and myopathy in a patient with a heterozygous insertion in POLG2. J Neurol 257(9):1517–1523PubMedCrossRefGoogle Scholar
  57. 57.
    Young MJ, Longley MJ, Li FY, Kasiviswanathan R, Wong LJ, Copeland WC (2011) Biochemical analysis of human POLG2 variants associated with mitochondrial disease. Hum Mol Genet 20(15):3052–3066PubMedCrossRefGoogle Scholar
  58. 58.
    Chan SS, Longley MJ, Copeland WC (2005) The common A467T mutation in the human mitochondrial DNA polymerase (POLG) compromises catalytic efficiency and interaction with the accessory subunit. J Biol Chem 280(36):31341–31346PubMedCrossRefGoogle Scholar
  59. 59.
    Michiels S, Danoy P, Dessen P et al (2007) Polymorphism discovery in 62 DNA repair genes and haplotype associations with risks for lung and head and neck cancers. Carcinogenesis 28(8):1731–1739PubMedCrossRefGoogle Scholar
  60. 60.
    Nakano M, Tashiro K (2011) Association studies getting broader: a commentary on ‘A polymorphism of the POLG2 gene is genetically associated with the invasiveness of urinary bladder cancer in Japanese males’. J Hum Genet 56(8):550–551PubMedCrossRefGoogle Scholar
  61. 61.
    Tyynismaa H, Sembongi H, Bokori-Brown M et al (2004) Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum Mol Genet 13(24):3219–3227PubMedCrossRefGoogle Scholar
  62. 62.
    Farge G, Holmlund T, Khvorostova J, Rofougaran R, Hofer A, Falkenberg M (2008) The N-terminal domain of TWINKLE contributes to single-stranded DNA binding and DNA helicase activities. Nucleic Acids Res 36(2):393–403PubMedCrossRefGoogle Scholar
  63. 63.
    Jemt E, Farge G, Backstrom S, Holmlund T, Gustafsson CM, Falkenberg M (2011) The mitochondrial DNA helicase TWINKLE can assemble on a closed circular template and support initiation of DNA synthesis. Nucleic Acids Res 39(21):9238–9249PubMedCrossRefGoogle Scholar
  64. 64.
    Guo S, Tabor S, Richardson CC (1999) The linker region between the helicase and primase domains of the bacteriophage T7 gene 4 protein is critical for hexamer formation. J Biol Chem 274(42):30303–30309PubMedCrossRefGoogle Scholar
  65. 65.
    Van Hove JL, Cunningham V, Rice C et al (2009) Finding twinkle in the eyes of a 71-year-old lady: a case report and review of the genotypic and phenotypic spectrum of TWINKLE-related dominant disease. Am J Med Genet Part A 149A(5):861–867PubMedCrossRefGoogle Scholar
  66. 66.
    Patel SS, Picha KM (2000) Structure and function of hexameric helicases. Annu Rev Biochem 69:651–697PubMedCrossRefGoogle Scholar
  67. 67.
    Korhonen JA, Pande V, Holmlund T et al (2008) Structure-function defects of the TWINKLE linker region in progressive external ophthalmoplegia. J Mol Biol 377(3):691–705PubMedCrossRefGoogle Scholar
  68. 68.
    Shutt TE, Gray MW (2006) Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. J Mol Evol 62(5):588–599PubMedCrossRefGoogle Scholar
  69. 69.
    Suomalainen A, Majander A, Wallin M et al (1997) Autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA: clinical, biochemical, and molecular genetic features of the 10q-linked disease. Neurology 48(5):1244–1253PubMedCrossRefGoogle Scholar
  70. 70.
    Fratter C, Gorman GS, Stewart JD et al (2010) The clinical, histochemical, and molecular spectrum of PEO1 (Twinkle)-linked adPEO. Neurology 74(20):1619–1626PubMedCrossRefGoogle Scholar
  71. 71.
    Virgilio R, Ronchi D, Hadjigeorgiou GM et al (2008) Novel Twinkle (PEO1) gene mutations in mendelian progressive external ophthalmoplegia. J Neurol 255(9):1384–1391PubMedCrossRefGoogle Scholar
  72. 72.
    Kiechl S, Horvath R, Luoma P et al (2004) Two families with autosomal dominant progressive external ophthalmoplegia. J Neurol Neurosurg Psychiatry 75(8):1125–1128PubMedCrossRefGoogle Scholar
  73. 73.
    Hudson G, Deschauer M, Busse K, Zierz S, Chinnery PF (2005) Sensory ataxic neuropathy due to a novel C10Orf2 mutation with probable germline mosaicism. Neurology 64(2):371–373PubMedCrossRefGoogle Scholar
  74. 74.
    Baloh RH, Salavaggione E, Milbrandt J, Pestronk A (2007) Familial parkinsonism and ophthalmoplegia from a mutation in the mitochondrial DNA helicase twinkle. Arch Neurol 64(7):998–1000PubMedCrossRefGoogle Scholar
  75. 75.
    Bohlega S, Van Goethem G, Al Semari A et al (2009) Novel Twinkle gene mutation in autosomal dominant progressive external ophthalmoplegia and multisystem failure. Neuromuscul Disord 19(12):845–848PubMedCrossRefGoogle Scholar
  76. 76.
    Echaniz-Laguna A, Chanson JB, Wilhelm JM et al (2010) A novel variation in the Twinkle linker region causing late-onset dementia. Neurogenetics 11(1):21–25PubMedCrossRefGoogle Scholar
  77. 77.
    Lewis S, Hutchison W, Thyagarajan D, Dahl HH (2002) Clinical and molecular features of adPEO due to mutations in the Twinkle gene. J Neurol Sci 201(1–2):39–44PubMedCrossRefGoogle Scholar
  78. 78.
    Nikali K, Suomalainen A, Saharinen J et al (2005) Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky. Hum Mol Genet 14(20):2981–2990PubMedCrossRefGoogle Scholar
  79. 79.
    Lonnqvist T, Paetau A, Valanne L, Pihko H (2009) Recessive twinkle mutations cause severe epileptic encephalopathy. Brain: J Neurol 132(Pt 6):1553–1562CrossRefGoogle Scholar
  80. 80.
    Hakonen AH, Davidzon G, Salemi R et al (2007) Abundance of the POLG disease mutations in Europe, Australia, New Zealand, and the United States explained by single ancient European founders. Eur J Hum Genet 15(7):779–783PubMedCrossRefGoogle Scholar
  81. 81.
    Sarzi E, Goffart S, Serre V et al (2007) Twinkle helicase (PEO1) gene mutation causes mitochondrial DNA depletion. Annals Neurol 62(6):579–587CrossRefGoogle Scholar
  82. 82.
    Hakonen AH, Isohanni P, Paetau A, Herva R, Suomalainen A, Lonnqvist T (2007) Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion. Brain: J Neurol 130(Pt 11):3032–3040CrossRefGoogle Scholar
  83. 83.
    Patel G, Johnson DS, Sun B et al (2011) A257T linker region mutant of T7 helicase-primase protein is defective in DNA loading and rescued by T7 DNA polymerase. J Biol Chem 286(23):20490–20499PubMedCrossRefGoogle Scholar
  84. 84.
    Holmlund T, Farge G, Pande V, Korhonen J, Nilsson L, Falkenberg M (2009) Structure-function defects of the twinkle amino-terminal region in progressive external ophthalmoplegia. Biochimica Et Biophysica Acta 1792(2):132–139PubMedCrossRefGoogle Scholar
  85. 85.
    Tyynismaa H, Mjosund KP, Wanrooij S et al (2005) Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci U S A 102(49):17687–17692PubMedCrossRefGoogle Scholar
  86. 86.
    Pohjoismaki JL, Goffart S, Spelbrink JN (2011) Replication stalling by catalytically impaired Twinkle induces mitochondrial DNA rearrangements in cultured cells. Mitochondrion 11(4):630–634PubMedCrossRefGoogle Scholar
  87. 87.
    Levy SE, Chen YS, Graham BH, Wallace DC (2000) Expression and sequence analysis of the mouse adenine nucleotide translocase 1 and 2 genes. Gene 254(1–2):57–66PubMedCrossRefGoogle Scholar
  88. 88.
    Huang SG, Odoy S, Klingenberg M (2001) Chimers of two fused ADP/ATP carrier monomers indicate a single channel for ADP/ATP transport. Arch Biochem Biophys 394(1):67–75PubMedCrossRefGoogle Scholar
  89. 89.
    Faustin B, Rossignol R, Rocher C, Benard G, Malgat M, Letellier T (2004) Mobilization of adenine nucleotide translocators as molecular bases of the biochemical threshold effect observed in mitochondrial diseases. J Biol Chem 279(19):20411–20421PubMedCrossRefGoogle Scholar
  90. 90.
    Benjamin F, Rodrigue R, Aurelien D et al (2011) The respiratory-dependent assembly of ANT1 differentially regulates Bax and Ca2+ mediated cytochrome c release. Front Biosci (Elite Ed) 3:395–409CrossRefGoogle Scholar
  91. 91.
    Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426(6962):39–44PubMedCrossRefGoogle Scholar
  92. 92.
    Brandolin G, Boulay F, Dalbon P, Vignais PV (1989) Orientation of the N-terminal region of the membrane-bound ADP/ATP carrier protein explored by antipeptide antibodies and an arginine-specific endoprotease. Evidence that the accessibility of the N-terminal residues depends on the conformational state of the carrier. Biochemistry 28(3):1093–1100PubMedCrossRefGoogle Scholar
  93. 93.
    Walker JE, Runswick MJ (1993) The mitochondrial transport protein superfamily. J Bioenerg Biomembr 25(5):435–446PubMedCrossRefGoogle Scholar
  94. 94.
    Napoli L, Bordoni A, Zeviani M et al (2001) A novel missense adenine nucleotide translocator-1 gene mutation in a Greek adPEO family. Neurology 57(12):2295–2298PubMedCrossRefGoogle Scholar
  95. 95.
    Komaki H, Fukazawa T, Houzen H, Yoshida K, Nonaka I, Goto Y (2002) A novel D104G mutation in the adenine nucleotide translocator 1 gene in autosomal dominant progressive external ophthalmoplegia patients with mitochondrial DNA with multiple deletions. Annals Neurol 51(5):645–648CrossRefGoogle Scholar
  96. 96.
    Siciliano G, Tessa A, Petrini S et al (2003) Autosomal dominant external ophthalmoplegia and bipolar affective disorder associated with a mutation in the ANT1 gene. Neuromuscul Disord 13(2):162–165PubMedCrossRefGoogle Scholar
  97. 97.
    Deschauer M, Hudson G, Muller T, Taylor RW, Chinnery PF, Zierz S (2005) A novel ANT1 gene mutation with probable germline mosaicism in autosomal dominant progressive external ophthalmoplegia. Neuromuscul Disord 15(4):311–315PubMedCrossRefGoogle Scholar
  98. 98.
    Palmieri L, Alberio S, Pisano I et al (2005) Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Hum Mol Genet 14(20):3079–3088PubMedCrossRefGoogle Scholar
  99. 99.
    Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16(3):226–234PubMedCrossRefGoogle Scholar
  100. 100.
    Kawamata H, Manfredi G (2011) Introduction to neurodegenerative diseases and related techniques. Methods Mol Biol 793:3–8PubMedCrossRefGoogle Scholar
  101. 101.
    Park KP, Kim HS, Kim ES, Park YE, Lee CH, Kim DS (2011) SLC25A4 and C10ORF2 mutations in autosomal dominant progressive external ophthalmoplegia. J Clin Neurol 7(1):25–30PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of Neurology, Neuromuscular DivisionMayo ClinicRochesterUSA

Personalised recommendations