Skip to main content

Disorders of Mitochondrial RNA Modification

  • Chapter
  • First Online:
  • 1204 Accesses

Abstract

Naturally occurring RNA molecules contain a variety of chemically modified nucleosides derived from the four standard nucleosides: cytidine, adenosine, uridine, and guanosine. These modified nucleosides contribute to many cellular processes, including RNA processing, the stability of RNA structures, and the fidelity and efficiency of protein expression. Alterations in RNA modification underlay the translational defects in the mitochondrial disorders MELAS syndrome and MERRF syndrome. Till date, two enzymes directly involved in RNA modification, TRMU and PUS1, have been identified which when mutated reduce the content of modified nucleosides of different classes of RNAs leading to altered protein expression and RNA stability. The underlying processes and components of RNA modification are reviewed, along with descriptions of the clinical features associated with this unique class of disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dunin-Horkawicz S, Czerwoniec A, Gajda MJ, Feder M, Grosjean H, Bujnicki JM (2006) MODOMICS: A database of RNA modification pathways. Nucleic Acids Res 34:D145–149

    Article  Google Scholar 

  2. Anantharaman V, Koonin EV, Aravind L (2002) Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 30:1427–1464

    Article  PubMed  CAS  Google Scholar 

  3. Ishitani R, Yokoyama S, Nureki O (2008) Structure, dynamics, and function of RNA modification enzymes. Current opinion in structural biology 18:330–339

    Article  PubMed  CAS  Google Scholar 

  4. Waas WF, Druzina Z, Hanan M, Schimmel P (2007) Role of a tRNA base modification and its precursors in frameshifting in eukaryotes. J Biol Chem 282:26026–26034

    Article  PubMed  CAS  Google Scholar 

  5. Gallo A, Locatelli F (2012) ADARs: Allies or enemies? The importance of A-to-I RNA editing in human disease: from cancer to HIV-1. Biol Rev Cambridge Philos Soc 87:95–110

    Article  PubMed  Google Scholar 

  6. Blanc V, Davidson NO (2011) Mouse and other rodent models of C to U RNA editing. Methods Mol Biol 718:121–135

    Article  PubMed  CAS  Google Scholar 

  7. Orlandi C, Barbon A, Barlati S (2012) Activity regulation of adenosine deaminases acting on RNA (ADARs). Mole Neurobiol 45:61–75

    Article  CAS  Google Scholar 

  8. Tan BZ, Huang H, Lam R, Soong TW (2009) Dynamic regulation of RNA editing of ion channels and receptors in the mammalian nervous system. Mol Brain 2:13

    Article  PubMed  Google Scholar 

  9. Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349

    Article  PubMed  CAS  Google Scholar 

  10. Paris Z, Fleming IM, Alfonzo JD (2011) Determinants of tRNA editing and modification: Avoiding conundrums, affecting function. Semin Cell Dev Biol

    Google Scholar 

  11. Randau L, Stanley BJ, Kohlway A, Mechta S, Xiong Y, Soll D (2009) A cytidine deaminase edits C to U in transfer RNAs in Archaea. Sci 324:657–659

    Article  CAS  Google Scholar 

  12. Ofengand J (2002) Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett 514:17–25

    Article  PubMed  CAS  Google Scholar 

  13. Madore E, Florentz C, Giege R, Sekine S, Yokoyama S, Lapointe J (1999) Effect of modified nucleotides on Escherichia coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm5 and s2 modifications of U34. Eur J Biochem FEBS 266:1128–1135

    Article  CAS  Google Scholar 

  14. Kruger MK, Pedersen S, Hagervall TG, Sorensen MA (1998) The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J Mol Biol 284:621–631

    Article  PubMed  CAS  Google Scholar 

  15. Urbonavicius J, Stahl G, Durand JM, Ben Salem SN, Qian Q, Farabaugh PJ, Bjork GR (2003) Transfer RNA modifications that alter + 1 frameshifting in general fail to affect−1 frameshifting. RNA 9:760–768

    Article  PubMed  CAS  Google Scholar 

  16. Kambampati R, Lauhon CT (2003) MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochem 42:1109–1117

    Article  CAS  Google Scholar 

  17. Hagervall TG, Pomerantz SC, McCloskey JA (1998) Reduced misreading of asparagine codons by Escherichia coli tRNALys with hypomodified derivatives of 5-methylaminomethyl-2-thiouridine in the wobble position. J Mol Biol 284:33–42

    Article  PubMed  CAS  Google Scholar 

  18. Sullivan MA, Cannon JF, Webb FH, Bock RM (1985) Antisuppressor mutation in Escherichia coli defective in biosynthesis of 5-methylaminomethyl-2-thiouridine. J Bacteriol 161:368–376

    PubMed  CAS  Google Scholar 

  19. Umeda N, Suzuki T, Yukawa M, Ohya Y, Shindo H, Watanabe K (2005) Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. Implications for the molecular pathogenesis of human mitochondrial diseases. J Biol Chem 280:1613–1624

    Article  PubMed  CAS  Google Scholar 

  20. Wang X, Yan Q, Guan MX (2007) Deletion of the MTO2 gene related to tRNA modification causes a failure in mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. FEBS Lett 581:4228–4234

    Article  PubMed  CAS  Google Scholar 

  21. Charette M, Gray MW (2000) Pseudouridine in RNA: What, where, how, and why. IUBMB Life 49:341–351

    Article  PubMed  CAS  Google Scholar 

  22. Guymon R, Pomerantz SC, Ison JN, Crain PF, McCloskey JA (2007) Post-transcriptional modifications in the small subunit ribosomal RNA from Thermotoga maritima, including presence of a novel modified cytidine. RNA 13:396–403

    Article  PubMed  CAS  Google Scholar 

  23. Reichow SL, Hamma T, Ferre-D’Amare AR, Varani G (2007) The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35:1452–1464

    Article  PubMed  CAS  Google Scholar 

  24. Kiss T, Fayet-Lebaron E, Jady BE (2010) Box H/ACA small ribonucleoproteins. Mol Cell 37:597–606

    Article  PubMed  Google Scholar 

  25. Lin J, Lai S, Jia R, Xu A, Zhang L, Lu J, Ye K (2011) Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Nat 469:559–563

    Article  CAS  Google Scholar 

  26. Hamma T, Ferre-D’Amare AR (2010) The box H/ACA ribonucleoprotein complex: interplay of RNA and protein structures in post-transcriptional RNA modification. J Biol Chem 285:805–809

    Article  PubMed  CAS  Google Scholar 

  27. Phillips G, de Crecy-Lagard V (2011) Biosynthesis and function of tRNA modifications in Archaea. Curr Opin Microbiol 14:335–341

    Article  PubMed  CAS  Google Scholar 

  28. Hamma T, Ferre-D’Amare AR (2006) Pseudouridine synthases. Chem Biol 13:1125–1135

    Article  PubMed  CAS  Google Scholar 

  29. Mason PJ, Bessler M (2011) The genetics of dyskeratosis congenital. Cancer Genet 204:635–645

    Article  PubMed  CAS  Google Scholar 

  30. Agris PF, Vendeix FA, Graham WD (2007) tRNA’s wobble decoding of the genome: 40 years of modification. J Mol Biol 366:1–13

    Article  PubMed  CAS  Google Scholar 

  31. Watanabe K, Yokobori S (2011) tRNA Modification and genetic code variations in animal mitochondria. J Nucleic Acids 2011:623095

    PubMed  Google Scholar 

  32. Kirino Y, Suzuki T (2005) Human mitochondrial diseases associated with tRNA wobble modification deficiency. RNA Biol 2:41–44

    Article  PubMed  CAS  Google Scholar 

  33. Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K, Suzuki T (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Nat Acad Sci U S A 101:15070–15075

    Article  CAS  Google Scholar 

  34. Sasarman F, Antonicka H, Horvath R, Shoubridge EA (2011) The 2-thiouridylase function of the human MTU1 (TRMU) enzyme is dispensable for mitochondrial translation. Hum Mol Genet 20:4634–4643

    Article  PubMed  CAS  Google Scholar 

  35. Zeharia A, Shaag A, Pappo O, Mager-Heckel AM, Saada A, Beinat M, Karicheva O, Mandel H, Ofek N, Segel R, Marom D, Rotig A, Tarassov I, Elpeleg O (2009) Acute infantile liver failure due to mutations in the TRMU gene. Am J Hum Genet 85:401–407

    Article  PubMed  CAS  Google Scholar 

  36. Schara U, von Kleist-Retzow JC, Lainka E, Gerner P, Pyle A, Smith PM, Lochmuller H, Czermin B, Abicht A, Holinski-Feder E, Horvath R (2011) Acute liver failure with subsequent cirrhosis as the primary manifestation of TRMU mutations. J Inherited Metab Dis 34:197–201

    Article  PubMed  Google Scholar 

  37. Lev D, Gilad E, Leshinsky-Silver E, Houri S, Levine A, Saada A, Lerman-Sagie T (2002) Reversible fulminant lactic acidosis and liver failure in an infant with hepatic cytochrome-c oxidase deficiency. J Inherited Metab Dis 25:371–377

    Article  PubMed  CAS  Google Scholar 

  38. Uusimaa J, Jungbluth H, Fratter C, Crisponi G, Feng L, Zeviani M, Hughes I, Treacy EP, Birks J, Brown GK, Sewry CA, McDermott M, Muntoni F, Poulton J (2011) Reversible infantile respiratory chain deficiency is a unique, genetically heterogenous mitochondrial disease. J Med Genet 48:660–66839

    Article  PubMed  CAS  Google Scholar 

  39. Guan MX, Yan Q, Li X, Bykhovskaya Y, Gallo-Teran J, Hajek P, Umeda N, Zhao H, Garrido G, Mengesha E, Suzuki T, del Castillo I, Peters JL, Li R, Qian Y, Wang X, Ballana E, Shohat M, Lu J, Estivill X, Watanabe K, Fischel-Ghodsian N (2006) Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12 S ribosomal RNA mutations. Am J Hum Genet 79:291–302

    Article  PubMed  CAS  Google Scholar 

  40. Bergmann AK, Campagna DR, McLoughlin EM, Agarwal S, Fleming MD, Bottomley SS, Neufeld EJ (2010) Systematic molecular genetic analysis of congenital sideroblastic anemia: Evidence for genetic heterogeneity and identification of novel mutations. Pediatr Blood Cancer 54:273–278

    PubMed  Google Scholar 

  41. Rawles JM, Weller RO (1974) Familial association of metabolic myopathy, lactic acidosis and sideroblastic anemia. Am J Med 56:891–897

    Article  PubMed  CAS  Google Scholar 

  42. Casas KA, Fischel-Ghodsian N (2004) Mitochondrial myopathy and sideroblastic anemia. Am J Med Genet Part A 125A:201–204

    Article  Google Scholar 

  43. Zeharia A, Fischel-Ghodsian N, Casas K, Bykhocskaya Y, Tamari H, Lev D, Mimouni M, Lerman-Sagie T (2005) Mitochondrial myopathy, sideroblastic anemia, and lactic acidosis: an autosomal recessive syndrome in Persian Jews caused by a mutation in the PUS1 gene. J Child Neurol 20:449–452

    Article  PubMed  Google Scholar 

  44. Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N (2004) Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 74:1303–1308

    Article  PubMed  CAS  Google Scholar 

  45. Casas K, Bykhovskaya Y, Mengesha E, Wang D, Yang H, Taylor K, Inbal A, Fischel-Ghodsian N (2004) Gene responsible for mitochondrial myopathy and sideroblastic anemia (MSA) maps to chromosome 12q24.33. Am J Med Genet Part A 127A:44–49

    Article  Google Scholar 

  46. Fernandez-Vizarra E, Berardinelli A, Valente L, Tiranti V, Zeviani M (2007) Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J Med Genet 44:173–180

    Article  PubMed  CAS  Google Scholar 

  47. Colley SM, Leedman PJ (2011) Steroid Receptor RNA Activator – A nuclear receptor coregulator with multiple partners: Insights and challenges. Biochimie 93:1966–1972

    Article  PubMed  CAS  Google Scholar 

  48. Zhao X, Patton JR, Ghosh SK, Fischel-Ghodsian N, Shen L, Spanjaard RA (2007) Pus3p- and Pus1p-dependent pseudouridylation of steroid receptor RNA activator controls a functional switch that regulates nuclear receptor signaling. Mol Endocrinol 21:686–699

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Craigen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Craigen, W. (2013). Disorders of Mitochondrial RNA Modification. In: Wong, LJ. (eds) Mitochondrial Disorders Caused by Nuclear Genes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3722-2_18

Download citation

Publish with us

Policies and ethics