Skip to main content

Mitochondrial Aminoacyl-tRNA Synthetases

  • Chapter
  • First Online:
Mitochondrial Disorders Caused by Nuclear Genes

Abstract

Aminoacyl-tRNA synthetases are an ancient family of enzymes that are essential in determining and accurately maintaining the genetic code. In the initial step of protein synthesis, the aminoacylation process requires each synthetase to specifically recognize and bind its cognate tRNA and to catalyze the transfer of the appropriate amino acid to the acceptor stem of the tRNA. The aminoacylation in the cytoplasm and mitochondria is largely performed by distinct sets of synthetases, which are encoded by separate nuclear genes. This separation is thought to be the consequence of evolutionary pressure of mitochondrial DNA size reduction, which has resulted in truncated tRNAs and subsequent inability of cytoplasmic aminoacyl-tRNA synthetases to recognize the mitochondrial tRNAs. Two enzymes, glycyl-and lysyl-tRNA synthetase, are exceptions because the same nuclear genes (GARS and KARS, respectively) encode both the cytoplasmic and the mitochondrial protein.

Patients with autosomal-recessive mutations in six genes (DARS2, RARS2, YARS2, SARS2, HARS2, and AARS2) encoding mitochondrial aminoacyl-tRNA synthetases have recently been reported, making this group of enzymes a new important cause of protein synthesis defects in the mitochondria. In addition, dominant mutations in GARS and KARS underlie Charcot-Marie-Tooth neuropathy. Deficient mitochondrial translation could be expected to reduce OXPHOS capacity and lead to ATP-deficiency in all tissues, primarily affecting the high-energy demanding tissues such as brain, heart, and skeletal muscle. Surprisingly, however, the defects in mitochondrial aminoacyl-tRNA synthetases have been identified in different types of tissue-specific disorders. The mechanism for the tissue-specificity is not currently understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schimmel P, Söll D (2005) The world of aminoacyl-tRNA synthetases. In: Ibba M, Francklyn C, Cusack S (eds) The aminoacyl-tRNA synthetases. Landes Bioscience, Georgetown, pp 1–3

    Google Scholar 

  2. Watanabe K (2010) Unique features of animal mitochondrial translation systems. The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc Jpn Acad Ser B Phys Biol Sci 86:11–39

    Article  PubMed  CAS  Google Scholar 

  3. Nagao A, Suzuki T, Katoh T, Sakaguchi Y (2009) Biogenesis of glutaminyl-mt tRNAGln in human mitochondria. Proc Natl Acad Sci U S A 106:16209–16214

    Article  PubMed  CAS  Google Scholar 

  4. van der Knaap MS, van der Voorn P, Barkhof F et al (2003) A new leukoencephalopathy with brainstem and spinal cord involvement and high lactate. Ann Neurol 53:252–258

    Article  PubMed  Google Scholar 

  5. Linnankivi T, Lundbom N, Autti T et al (2004) Five new cases of a recently described leukoencephalopathy with high brain lactate. Neurology 63:688–692

    Article  PubMed  CAS  Google Scholar 

  6. Scheper GC, van der Klok T, van Andel RJ et al (2007) Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 39:534–539

    Article  PubMed  CAS  Google Scholar 

  7. van Berge L, Dooves S, van Berkel CG, Polder E, van der Knaap MS, Scheper GC (2012) Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation is associated with cell type-dependent splicing of mtAspRS mRNA. Biochem J 441(3):955–962

    Article  PubMed  CAS  Google Scholar 

  8. Lin J, Chiconelli Faria E, Da Rocha AJ et al (2010) Leukoencephalopathy with brainstem and spinal cord involvement and normal lactate: a new mutation in the DARS2 gene. J Child Neurol 25:1425–1428

    Article  PubMed  CAS  Google Scholar 

  9. Tzoulis C, Tran GT, Gjerde IO et al (2012) Leukoencephalopathy with brainstem and spinal cord involvement caused by a novel mutation in the DARS2 gene. J Neurol 259(2):292–296

    Article  PubMed  Google Scholar 

  10. Synofzik M, Schicks J, Lindig T et al (2011) Acetazolamide-responsive exercise-induced episodic ataxia associated with a novel homozygous DARS2 mutation. J Med Genet 48:713–715

    Article  PubMed  CAS  Google Scholar 

  11. Miyake N, Yamashita S, Kurosawa K et al (2011) A novel homozygous mutation of DARS2 may cause a severe LBSL variant. Clin Genet 80:293–296

    Article  PubMed  CAS  Google Scholar 

  12. Edvardson S, Shaag A, Kolesnikova O et al (2007) Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81:857–862

    Article  PubMed  CAS  Google Scholar 

  13. Rankin J, Brown R, Dobyns WB et al (2010) Pontocerebellar hypoplasia type 6: a British case with PEHO-like features. Am J Med Genet A 152A:2079–2084

    Article  PubMed  CAS  Google Scholar 

  14. Namavar Y, Barth PG, Kasher PR et al (2011) Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain 134:143–156

    Article  PubMed  Google Scholar 

  15. Kasher PR, Namavar Y, van Tijn P et al (2011) Impairment of the tRNA-splicing endonuclease subunit 54 (tsen54) gene causes neurological abnormalities and larval death in zebrafish models of pontocerebellar hypoplasia. Hum Mol Genet 20:1574–1584

    Article  PubMed  CAS  Google Scholar 

  16. Yoshihisa T, Yunoki-Esaki K, Ohshima C, Tanaka N, Endo T (2003) Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria. Mol Biol Cell 14:3266–3279

    Article  PubMed  CAS  Google Scholar 

  17. Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N (2004) Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 74:1303–1308

    Article  PubMed  CAS  Google Scholar 

  18. Patton JR, Bykhovskaya Y, Mengesha E, Bertolotto C, Fischel-Ghodsian N (2005) Mitochondrial myopathy and sideroblastic anemia (MLASA): missense mutation in the pseudouridine synthase 1 (PUS1) gene is associated with the loss of tRNA pseudouridylation. J Biol Chem 280:19823–19828

    Article  PubMed  CAS  Google Scholar 

  19. Riley LG, Cooper S, Hickey P et al (2010) Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia—MLASA syndrome. Am J Hum Genet 87:52–59

    Article  PubMed  CAS  Google Scholar 

  20. Fechter P, Rudinger-Thirion J, Theobald-Dietrich A, Giege R (2000) Identity of tRNA for yeast tyrosyl-tRNA synthetase: tyrosylation is more sensitive to identity nucleotides than to structural features. Biochemistry 39:1725–1733

    Article  PubMed  CAS  Google Scholar 

  21. Belostotsky R, Ben-Shalom E, Rinat C et al (2011) Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet 88:193–200

    Article  PubMed  CAS  Google Scholar 

  22. Chimnaronk S, Gravers Jeppesen M, Suzuki T, Nyborg J, Watanabe K (2005) Dual-mode recognition of noncanonical tRNAs(Ser) by seryl-tRNA synthetase in mammalian mitochondria. EMBO J 24:3369–3379

    Article  PubMed  CAS  Google Scholar 

  23. Pierce SB, Chisholm KM, Lynch ED et al (2011) Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Sci U S A 108:6543–6548

    Article  PubMed  CAS  Google Scholar 

  24. Gotz A, Tyynismaa H, Euro L et al (2011) Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet 88:635–642

    Article  PubMed  CAS  Google Scholar 

  25. Guo M, Chong YE, Shapiro R, Beebe K, Yang XL, Schimmel P (2009) Paradox of mistranslation of serine for alanine caused by AlaRS recognition dilemma. Nature 462:808–812

    Article  PubMed  CAS  Google Scholar 

  26. t Hart LM, Hansen T, Rietveld I et al (2005) Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene. Diabetes 54:1892–1895

    Article  CAS  Google Scholar 

  27. Reiling E, Jafar-Mohammadi B, van ’t Riet E et al (2010) Genetic association analysis of LARS2 with type 2 diabetes. Diabetologia 53:103–110

    Article  PubMed  CAS  Google Scholar 

  28. Tolkunova E, Park H, Xia J, King MP, Davidson E (2000) The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript. J Biol Chem 275:35063–35069

    Article  PubMed  CAS  Google Scholar 

  29. Chang KJ, Wang CC (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279:13778–13785

    Article  PubMed  CAS  Google Scholar 

  30. Antonellis A, Ellsworth RE, Sambuughin N et al (2003) Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet 72:1293–1299

    Article  PubMed  CAS  Google Scholar 

  31. He W, Zhang HM, Chong YE, Guo M, Marshall AG, Yang XL (2011) Dispersed disease-causing neomorphic mutations on a single protein promote the same localized conformational opening. Proc Natl Acad Sci U S A 108:12307–12312

    Article  PubMed  CAS  Google Scholar 

  32. Nangle LA, Zhang W, Xie W, Yang XL, Schimmel P (2007) Charcot-Marie-Tooth disease-associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. Proc Natl Acad Sci U S A 104:11239–11244

    Article  PubMed  CAS  Google Scholar 

  33. Motley WW, Talbot K, Fischbeck KH (2010) GARS axonopathy: not every neuron’s cup of tRNA. Trends Neurosci 33:59–66

    Article  PubMed  CAS  Google Scholar 

  34. McLaughlin HM, Sakaguchi R, Liu C et al (2010) Compound heterozygosity for loss-of-function lysyl-tRNA synthetase mutations in a patient with peripheral neuropathy. Am J Hum Genet 87:560–566

    Article  PubMed  CAS  Google Scholar 

  35. Jordanova A, Irobi J, Thomas FP et al (2006) Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet 38:197–202

    Article  PubMed  CAS  Google Scholar 

  36. Latour P, Thauvin-Robinet C, Baudelet-Mery C et al (2010) A major determinant for binding and aminoacylation of tRNA(Ala) in cytoplasmic Alanyl-tRNA synthetase is mutated in dominant axonal Charcot-Marie-Tooth disease. Am J Hum Genet 86:77–82

    Article  PubMed  CAS  Google Scholar 

  37. Zuchner S, Mersiyanova IV, Muglia M et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449–451

    Article  PubMed  Google Scholar 

  38. Li R, Guan MX (2010) Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol Cell Biol 30:2147–2154

    Article  PubMed  CAS  Google Scholar 

  39. Perli E, Giordano C, Tuppen HA et al (2012) Isoleucyl-tRNA synthetase levels modulate the penetrance of a homoplasmic m.4277T>C mitochondrial tRNAIle mutation causing hypertrophic cardiomyopathy. Hum Mol Genet 21(1):85–100

    Article  PubMed  Google Scholar 

  40. Rorbach J, Yusoff AA, Tuppen H et al (2008) Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res 36:3065–3074

    Article  PubMed  CAS  Google Scholar 

  41. Guo M, Yang XL, Schimmel P (2010) New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol 11:668–674

    Article  PubMed  CAS  Google Scholar 

  42. Crimi M, Galbiati S, Perini MP et al (2003) A mitochondrial tRNA(His) gene mutation causing pigmentary retinopathy and neurosensorial deafness. Neurology 60:1200–1203

    Article  PubMed  CAS  Google Scholar 

  43. Spagnolo M, Tomelleri G, Vattemi G, Filosto M, Rizzuto N, Tonin P (2001) A new mutation in the mitochondrial tRNA(Ala) gene in a patient with ophthalmoplegia and dysphagia. Neuromuscul Disord 11:481–484

    Article  PubMed  CAS  Google Scholar 

  44. Swalwell H, Deschauer M, Hartl H et al (2006) Pure myopathy associated with a novel mitochondrial tRNA gene mutation. Neurology 66:447–449

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henna Tyynismaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tyynismaa, H. (2013). Mitochondrial Aminoacyl-tRNA Synthetases. In: Wong, LJ. (eds) Mitochondrial Disorders Caused by Nuclear Genes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3722-2_16

Download citation

Publish with us

Policies and ethics