Skip to main content

Mitochondrial Complex III Deficiency of Nuclear Origin:

Molecular Basis, Pathophysiological Mechanisms, and Mouse Models

  • Chapter
  • First Online:
Mitochondrial Disorders Caused by Nuclear Genes

Abstract

Mitochondrial respiratory chain complex III enzyme deficiency is associated with a heterogeneous group of neuromuscular and multisystemic disorders of variable severity that are present in childhood and adulthood. Despite being considered a relatively uncommon defect of the OXPHOS system, interest has recently shifted toward the Mendelian inheritance of mitochondrial complex III-related disease due to the increasing number of nuclear genetic defects that affect its biogenesis and function. Not only are most complex III subunits encoded by nuclear genes, but also are an increasing number of specific regulatory proteins and assembly factors involved in the biosynthesis of this respiratory chain complex, which have been described in different organisms. From a clinic-genetic point of view, inherited complex III enzyme deficiency can be classified into disorders due to mutations in complex III structural constituents, or those caused by mutations in assembly chaperones, such as BCS1L and TTC19. The first part of this review will focus on the relationships between the nuclear genetic alterations that lead to complex III deficiency and their clinical manifestations. The second part will explain what is known so far about the cellular pathophysiological consequences of complex III dysfunction with regards to defects in the activity and assembly of the respirasome, and the alterations in the production of reactive oxygen species and mitochondrial dynamics. The final part of this review will describe the development and experimental advances in new mammalian models of complex III deficiency with a special emphasis on the GRACILE mouse, which has arisen as a powerful approach to better understand complex III enzyme deficiency of nuclear origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baum H, Rieske JS, Silman HI, Lipton SH (1967) On the mechanism of electron transfer in complex III of the electron transfer chain. Proc Natl Acad Sci U S A 57:798–805

    Article  PubMed  CAS  Google Scholar 

  2. Xia D, Yu CA, Kim H et al (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277:60–66

    Article  PubMed  CAS  Google Scholar 

  3. Iwata S, Lee JW, Okada K et al (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71

    Article  PubMed  CAS  Google Scholar 

  4. Borisov VB (2002) Defects in mitochondrial respiratory complexes III and IV, and human pathologies. Mol Aspects Med 23:385–412

    Article  PubMed  CAS  Google Scholar 

  5. Benit P, Lebon S, Rustin P (2009) Respiratory-chain diseases related to complex III deficiency. Biochim Biophys Acta 1793:181–185

    Article  PubMed  CAS  Google Scholar 

  6. Scaglia F, Towbin JA, Craigen WJ et al (2004) Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 114:925–931

    Article  PubMed  Google Scholar 

  7. Andreu AL, Hanna MG, Reichmann H et al (1999) Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 341:1037–1044

    Article  PubMed  CAS  Google Scholar 

  8. Mourmans J, Wendel U, Bentlage HA et al (1997) Clinical heterogeneity in respiratory chain complex III deficiency in childhood. J Neurol Sci 149:111–117

    Article  PubMed  CAS  Google Scholar 

  9. Nobrega FG, Nobrega MP, Tzagoloff A (1992) BCS1, a novel gene required for the expression of functional Rieske iron-sulfur protein in Saccharomyces cerevisiae. EMBO J 11:3821–3829

    PubMed  CAS  Google Scholar 

  10. Cruciat CM, Hell K, Folsch H, Neupert W, Stuart RA (1999) Bcs1p, an AAA-family member, is a chaperone for the assembly of the cytochrome bc(1) complex. EMBO J 18:5226–5233

    Article  PubMed  CAS  Google Scholar 

  11. Ghezzi D, Arzuffi P, Zordan M et al (2011) Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat Genet 43:259–263

    Article  PubMed  CAS  Google Scholar 

  12. Shi G, Crivellone MD, Edderkaoui B (2001) Identification of functional regions of Cbp3p, an enzyme-specific chaperone required for the assembly of ubiquinol-cytochrome c reductase in yeast mitochondria. Biochim Biophys Acta 1506:103–116

    Article  PubMed  CAS  Google Scholar 

  13. Kronekova Z, Rodel G (2005) Organization of assembly factors Cbp3p and Cbp4p and their effect on bc(1) complex assembly in Saccharomyces cerevisiae. Curr Genet 47:203–212

    Article  PubMed  CAS  Google Scholar 

  14. Dieckmann CL, Tzagoloff A (1985) Assembly of the mitochondrial membrane system. CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b. J Biol Chem 260:1513–1520

    PubMed  CAS  Google Scholar 

  15. Mathieu L, Marsy S, Saint-Georges Y, Jacq C, Dujardin G (2011) A transcriptome screen in yeast identifies a novel assembly factor for the mitochondrial complex III. Mitochondrion 11:391–396

    Article  PubMed  CAS  Google Scholar 

  16. Atkinson A, Smith P, Fox JL, Cui TZ, Khalimonchuk O, Winge DR (2011) The LYR protein Mzm1 functions in the insertion of the Rieske Fe/S protein in yeast mitochondria. Mol Cell Biol 31:3988–3996

    Article  PubMed  CAS  Google Scholar 

  17. Fellman V, Kotarsky H (2011) Mitochondrial hepatopathies in the newborn period. Semin Fetal Neonatal Med 16:222–228

    Article  PubMed  Google Scholar 

  18. Dimauro S, Garone C (2011) Metabolic disorders of fetal life: glycogenoses and mitochondrial defects of the mitochondrial respiratory chain. Semin Fetal Neonatal Med 16:181–189

    Article  PubMed  CAS  Google Scholar 

  19. Haut S, Brivet M, Touati G et al (2003) A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis. Hum Genet 113:118–122

    PubMed  CAS  Google Scholar 

  20. Wakabayashi S, Takao T, Shimonishi Y et al (1985) Complete amino acid sequence of the ubiquinone binding protein (QP-C), a protein similar to the 14,000-dalton subunit of the yeast ubiquinol-cytochrome c reductase complex. J Biol Chem 260:337–343

    PubMed  CAS  Google Scholar 

  21. von Jagow G, Link TA, Ohnishi T (1986) Organization and function of cytochrome b and ubiquinone in the cristae membrane of beef heart mitochondria. J Bioenerg Biomembr 18:157–179

    Article  PubMed  CAS  Google Scholar 

  22. Jung HJ, Shim JS, Lee J et al (2010) Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. J Biol Chem 285:11584–11595

    Article  PubMed  CAS  Google Scholar 

  23. Barel O, Shorer Z, Flusser H et al (2008) Mitochondrial complex III deficiency associated with a homozygous mutation in UQCRQ. Am J Hum Genet 82:1211–1216

    Article  PubMed  CAS  Google Scholar 

  24. Usui S, Yu L, Yu CA (1990) The small molecular mass ubiquinone-binding protein (QPc-9.5 kDa) in mitochondrial ubiquinol-cytochrome c reductase: isolation, ubiquinone-binding domain, and immunoinhibition. Biochemistry 29:4618–4626

    CAS  Google Scholar 

  25. Yu L, Deng K, Yu CA (1995) Cloning, gene sequencing, and expression of the small molecular mass ubiquinone-binding protein of mitochondrial ubiquinol-cytochrome c reductase. J Biol Chem 270:25634–25638

    Article  PubMed  CAS  Google Scholar 

  26. Conte L, Trumpower BL, Zara V (2011) Bcs1p can rescue a large and productive cytochrome bc(1) complex assembly intermediate in the inner membrane of yeast mitochondria. Biochim Biophys Acta 1813:91–101

    Article  PubMed  CAS  Google Scholar 

  27. Fernandez-Vizarra E, Tiranti V, Zeviani M (2009) Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects. Biochim Biophys Acta 1793:200–211

    Article  PubMed  CAS  Google Scholar 

  28. Diaz F, Kotarsky H, Fellman V, Moraes CT (2011) Mitochondrial disorders caused by mutations in respiratory chain assembly factors. Semin Fetal Neonatal Med 16:197–204

    Article  PubMed  Google Scholar 

  29. Moran M, Marin-Buera L, Gil-Borlado MC et al (2010) Cellular pathophysiological consequences of BCS1L mutations in mitochondrial complex III enzyme deficiency. Hum Mutat 31:930–941

    Article  PubMed  CAS  Google Scholar 

  30. de Lonlay P, Valnot I, Barrientos A et al (2001) A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 29:57–60

    Article  PubMed  CAS  Google Scholar 

  31. Visapaa I, Fellman V, Vesa J et al (2002) GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am J Hum Genet 71:863–876

    Article  PubMed  Google Scholar 

  32. Fernandez-Vizarra E, Bugiani M, Goffrini P et al (2007) Impaired complex III assembly associated with BCS1L gene mutations in isolated mitochondrial encephalopathy. Hum Mol Genet 16:1241–1252

    Article  PubMed  CAS  Google Scholar 

  33. De Meirleir L, Seneca S, Damis E et al (2003) Clinical and diagnostic characteristics of complex III deficiency due to mutations in the BCS1L gene. Am J Med Genet A 121A:126–131

    Article  PubMed  Google Scholar 

  34. Hinson JT, Fantin VR, Schonberger J et al (2007) Missense mutations in the BCS1L gene as a cause of the Bjornstad syndrome. N Engl J Med 356:809–819

    Article  PubMed  CAS  Google Scholar 

  35. Fellman V, Lemmela S, Sajantila A, Pihko H, Jarvela I (2008) Screening of BCS1L mutations in severe neonatal disorders suspicious for mitochondrial cause. J Hum Genet 53:554–558

    Article  PubMed  CAS  Google Scholar 

  36. Gil-Borlado MC, Gonzalez-Hoyuela M, Blazquez A et al (2009) Pathogenic mutations in the 5¢ untranslated region of BCS1L mRNA in mitochondrial complex III deficiency. Mitochondrion 9:299–305

    Article  PubMed  CAS  Google Scholar 

  37. Blazquez A, Gil-Borlado MC, Moran M et al (2009) Infantile mitochondrial encephalomyopathy with unusual phenotype caused by a novel BCS1L mutation in an isolated complex III-deficient patient. Neuromuscul Disord 19:143–146

    Article  PubMed  Google Scholar 

  38. Ramos-Arroyo MA, Hualde J, Ayechu A et al (2009) Clinical and biochemical spectrum of mitochondrial complex III deficiency caused by mutations in the BCS1L gene. Clin Genet 75:585–587

    Article  PubMed  CAS  Google Scholar 

  39. Tuppen HA, Fehmi J, Czermin B et al (2010) Long-term survival of neonatal mitochondrial complex III deficiency associated with a novel BCS1L gene mutation. Mol Genet Metab 100:345–348

    Article  PubMed  CAS  Google Scholar 

  40. Petruzzella V, Tiranti V, Fernandez P, Ianna P, Carrozzo R, Zeviani M (1998) Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain. Genomics 54:494–504

    Article  PubMed  CAS  Google Scholar 

  41. Zara V, Conte L, Trumpower BL (2007) Identification and characterization of cytochrome bc(1) subcomplexes in mitochondria from yeast with single and double deletions of genes encoding cytochrome bc(1) subunits. FEBS J 274:4526–4539

    Article  PubMed  CAS  Google Scholar 

  42. Wagener N, Ackermann M, Funes S, Neupert W (2011) A Pathway of protein translocation in mitochondria mediated by the AAA-ATPase Bcs1. Mol Cell 44:191–202

    Article  PubMed  CAS  Google Scholar 

  43. Diaz F, Enriquez JA, Moraes CT (2011) Cells lacking Rieske iron sulfur protein have a ROS-associated decrease in respiratory complexes I and IV. Mol Cell Biol 32(2):415–429. doi:10.1128/MCB.06051-11

    Article  PubMed  Google Scholar 

  44. Folsch H, Guiard B, Neupert W, Stuart RA (1996) Internal targeting signal of the BCS1 protein: A novel mechanism of import into mitochondria. EMBO J 15:479–487

    PubMed  CAS  Google Scholar 

  45. Nouet C, Truan G, Mathieu L, Dujardin G (2009) Functional analysis of yeast bcs1 mutants highlights the role of Bcs1p-specific amino acids in the AAA domain. J Mol Biol 388:252–261

    Article  PubMed  CAS  Google Scholar 

  46. Frickey T, Lupas AN (2004) Phylogenetic analysis of AAA proteins. J Struct Biol 146:2–10

    Article  PubMed  CAS  Google Scholar 

  47. Fellman V (2002) The GRACILE syndrome, a neonatal lethal metabolic disorder with iron overload. Blood Cells Mol Dis 29:444–450

    Article  PubMed  CAS  Google Scholar 

  48. Kotarsky H, Karikoski R, Morgelin M et al (2010) Characterization of complex III deficiency and liver dysfunction in GRACILE syndrome caused by a BCS1L mutation. Mitochondrion 10:497–509

    Article  PubMed  CAS  Google Scholar 

  49. Kotarsky H, Tabasum I, Mannisto S, Heikinheimo M, Hansson S, Fellman V (2007) BCS1L is expressed in critical regions for neural development during ontogenesis in mice. Gene Expr Patterns 7:266–273

    Article  PubMed  CAS  Google Scholar 

  50. von Kleist-Retzow JC, Cormier-Daire V, de Lonlay P et al (1998) A high rate (20 %–30 %) of parental consanguinity in cytochrome-oxidase deficiency. Am J Hum Genet 63:428–435

    Article  PubMed  CAS  Google Scholar 

  51. Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    Article  PubMed  CAS  Google Scholar 

  52. Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    Article  PubMed  CAS  Google Scholar 

  53. Boekema EJ, Braun HP (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem 282:1–4

    Article  PubMed  CAS  Google Scholar 

  54. Schagger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555:154–159

    Article  PubMed  CAS  Google Scholar 

  55. Schagger H (2001) Respiratory chain supercomplexes. IUBMB Life 52:119–128

    Article  PubMed  CAS  Google Scholar 

  56. Schagger H, Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867

    PubMed  CAS  Google Scholar 

  57. Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    Article  PubMed  CAS  Google Scholar 

  58. Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12:961–1008

    Article  PubMed  CAS  Google Scholar 

  59. Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P et al (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13:805–815

    Article  PubMed  CAS  Google Scholar 

  60. Li Y, D’Aurelio M, Deng JH et al (2007) An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J Biol Chem 282:17557–17562

    Article  PubMed  CAS  Google Scholar 

  61. Soto IC, Fontanesi F, Valledor M, Horn D, Singh R, Barrientos A (2009) Synthesis of cytochrome c oxidase subunit 1 is translationally downregulated in the absence of functional F1F0-ATP synthase. Biochim Biophys Acta 1793:1776–1786

    Article  PubMed  CAS  Google Scholar 

  62. Vempati UD, Han X, Moraes CT (2009) Lack of cytochrome c in mouse fibroblasts disrupts assembly/stability of respiratory complexes I and IV. J Biol Chem 284:4383–4391

    Article  PubMed  CAS  Google Scholar 

  63. Schagger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U(2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279:36349–36353

    Article  PubMed  Google Scholar 

  64. Calvaruso MA, Willems P, van den Brand M et al (2011) Mitochondrial complex III stabilizes complex I in the absence of NDUFS4 to provide partial activity. Hum Mol Genet 21(1):115–120. doi:10.1093/hmg/ddr446

    Article  PubMed  CAS  Google Scholar 

  65. Lamantea E, Carrara F, Mariotti C, Morandi L, Tiranti V, Zeviani M (2002) A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul Disord 12:49–52

    Article  PubMed  Google Scholar 

  66. Distelmaier F, Visch HJ, Smeitink JA, Mayatepek E, Koopman WJ, Willems PH (2009) The antioxidant Trolox restores mitochondrial membrane potential and Ca2+-stimulated ATP production in human complex I deficiency. J Mol Med 87:515–522

    Article  PubMed  CAS  Google Scholar 

  67. Iuso A, Scacco S, Piccoli C et al (2006) Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I. J Biol Chem 281:10374–10380

    Article  PubMed  CAS  Google Scholar 

  68. Moran M, Rivera H, Sanchez-Arago M et al (2010) Mitochondrial bioenergetics and dynamics interplay in complex I-deficient fibroblasts. Biochim Biophys Acta 1802:443–453

    Article  PubMed  CAS  Google Scholar 

  69. Guillery O, Malka F, Frachon P, Milea D, Rojo M, Lombes A (2008) Modulation of mitochondrial morphology by bioenergetics defects in primary human fibroblasts. Neuromuscul Disord 18:319–330

    Article  PubMed  CAS  Google Scholar 

  70. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  PubMed  CAS  Google Scholar 

  71. Levanets O, Reinecke F, Louw R et al (2011) Mitochondrial DNA replication and OXPHOS gene transcription show varied responsiveness to Rieske protein knockdown in 143B cells. Biochimie 93:758–765

    Article  PubMed  CAS  Google Scholar 

  72. Hughes BG, Hekimi S (2011) A mild impairment of mitochondrial electron transport has sex-specific effects on lifespan and aging in mice. PLoS One 6:e26116

    Article  PubMed  CAS  Google Scholar 

  73. Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8:e1000556

    Google Scholar 

  74. Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644

    Article  PubMed  CAS  Google Scholar 

  75. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    Article  PubMed  CAS  Google Scholar 

  76. Campello S, Scorrano L (2010) Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep 11:678–684

    Article  PubMed  CAS  Google Scholar 

  77. Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845

    Article  PubMed  CAS  Google Scholar 

  78. Benard G, Bellance N, James D et al (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120:838–848

    Article  PubMed  CAS  Google Scholar 

  79. Sauvanet C, Duvezin-Caubet S, di Rago JP, Rojo M (2010) Energetic requirements and bioenergetic modulation of mitochondrial morphology and dynamics. Semin Cell Dev Biol 21:558–565

    Article  PubMed  CAS  Google Scholar 

  80. Benard G, Karbowski M (2009) Mitochondrial fusion and division: Regulation and role in cell viability. Semin Cell Dev Biol 20:365–374

    Article  PubMed  CAS  Google Scholar 

  81. Koopman WJ, Verkaart S, Visch HJ et al (2007) Human NADH: ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology? Am J Physiol Cell Physiol 293:C22–C29

    Article  PubMed  CAS  Google Scholar 

  82. Pham NA, Richardson T, Cameron J, Chue B, Robinson BH (2004) Altered mitochondrial structure and motion dynamics in living cells with energy metabolism defects revealed by real time microscope imaging. Microsc Microanal 10:247–260

    Article  PubMed  CAS  Google Scholar 

  83. Tamai S, Iida H, Yokota S et al (2008) Characterization of the mitochondrial protein LETM1, which maintains the mitochondrial tubular shapes and interacts with the AAA-ATPase BCS1L. J Cell Sci 121:2588–2600

    Article  PubMed  CAS  Google Scholar 

  84. Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A 103:2653–2658

    Article  PubMed  Google Scholar 

  85. Vempati UD, Torraco A, Moraes CT (2008) Mouse models of oxidative phosphorylation dysfunction and disease. Methods 46:241–247

    Article  PubMed  CAS  Google Scholar 

  86. Wallace DC, Fan W (2009) The pathophysiology of mitochondrial disease as modeled in the mouse. Genes Dev 23:1714–1736

    Article  PubMed  CAS  Google Scholar 

  87. Kruse SE, Watt WC, Marcinek DJ, Kapur RP, Schenkman KA, Palmiter RD (2008) Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab 7:312–320

    Article  PubMed  CAS  Google Scholar 

  88. Pospisilik JA, Knauf C, Joza N et al (2007) Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131:476–491

    Article  PubMed  CAS  Google Scholar 

  89. Diaz F, Garcia S, Hernandez D et al (2008) Pathophysiology and fate of hepatocytes in a mouse model of mitochondrial hepatopathies. Gut 57:232–242

    Article  PubMed  CAS  Google Scholar 

  90. Diaz F, Thomas CK, Garcia S, Hernandez D, Moraes CT (2005) Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency. Hum Mol Genet 14:2737–2748

    Article  PubMed  CAS  Google Scholar 

  91. Fukui H, Diaz F, Garcia S, Moraes CT (2007) Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 104:14163–14168

    Article  PubMed  CAS  Google Scholar 

  92. Leveen P, Kotarsky H, Morgelin M, Karikoski R, Elmer E, Fellman V (2011) The GRACILE mutation introduced into Bcs1l causes postnatal complex III deficiency: a viable mouse model for mitochondrial hepatopathy. Hepatology 53:437–447

    Article  PubMed  CAS  Google Scholar 

  93. Garcia S, Diaz F, Moraes CT (2008) A 3′ UTR modification of the mitochondrial rieske iron sulfur protein in mice produces a specific skin pigmentation phenotype. J Invest Dermatol 128:2343–2345

    Article  PubMed  CAS  Google Scholar 

  94. Brandt U, Haase U, Schagger H, von Jagow G (1991) Significance of the "Rieske" iron-sulfur protein for formation and function of the ubiquinol-oxidation pocket of mitochondrial cytochrome c reductase (bc1 complex). J Biol Chem 266:19958–19964

    PubMed  CAS  Google Scholar 

  95. Gurung B, Yu L, Xia D, Yu CA (2005) The iron-sulfur cluster of the Rieske iron-sulfur protein functions as a proton-exiting gate in the cytochrome bc(1) complex. J Biol Chem 280:24895–24902

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Instituto de Investigación Hospital Universitario 12 de Octubre (I+12), and Instituto de Salud Carlos III (ISCIII)/Ministry of Science and Innovation (MCINN) to C.U. (grant numbers PI08-0021 and PI11-00182), to M.M. (CP11-00151) and to M.A.M. (PI09-01359). M.A.M. was the recipient of a “Intensificación de la Actividad Investigadora” action from ISCIII and Comunidad Autónoma de Madrid (CAM), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Ugalde Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blázquez, A. et al. (2013). Mitochondrial Complex III Deficiency of Nuclear Origin:. In: Wong, LJ. (eds) Mitochondrial Disorders Caused by Nuclear Genes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3722-2_14

Download citation

Publish with us

Policies and ethics