Skip to main content

Complex Subunits and Assembly Genes: Complex I

  • Chapter
  • First Online:
  • 1227 Accesses

Abstract

Mitochondrial respiratory chain complex I (CI) performs the first step of oxidative phosphorylation (OXPHOS), essential for cellular energy production. This large intricate protein complex is composed of multiple subunits encoded both by the mitochondrial and nuclear genomes and its assembly depends on several nuclear-encoded factors. Isolated CI deficiency due to mutations in nuclear-encoded subunits or assembly factors is a relatively common mitochondrial disorder; however, many patients remain without a molecular diagnosis. Clinical symptoms may vary but are mostly neurological with early manifestation and a grave prognosis. Despite increasing knowledge of CI assembly function and pathomechanism gained by the study of patient’s cells and animal models, a satisfactory treatment, is presently unavailable. Therefore, identification of the underlying molecular cause is imperative in order to provide genetic counseling.

The nomenclatures of genes C20orf7 and C8orf38 has recently been updated by the Human Genome Organization (HUGO) in accordance with the Guidelines for Human Gene Nomenclature as follows: C20orf7 is now designated as NDUFAF5 and C8orf38 is now designated as NDUFAF6.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    PubMed  CAS  Google Scholar 

  2. Brandt U (2011) A two-state stabilization-change mechanism for proton-pumping complex I. Biochim Biophys Acta 1807:1364–1369

    PubMed  CAS  Google Scholar 

  3. Clason T, Ruiz T, Schägger H et al (2010) The structure of eukaryotic and prokaryotic complex I. J Struct Biol 169:81–88

    PubMed  CAS  Google Scholar 

  4. Althoff T, Mills DJ, Popot JL, Kühlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I(1)III(2)IV(1). EMBO J 30:4652–4664. doi:10.1038/emboj

    PubMed  CAS  Google Scholar 

  5. Schagger H (2001) Respiratory chain supercomplexes. IUBMB Life 52:119–128

    PubMed  CAS  Google Scholar 

  6. Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–32727

    PubMed  CAS  Google Scholar 

  7. Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–551

    PubMed  CAS  Google Scholar 

  8. Efremov RG, Sazanov LA (2011) Respiratory complex I: ‘steam engine’ of the cell? Curr Opin Struct Biol 21:532–540

    PubMed  CAS  Google Scholar 

  9. Angerer H, Zwicker K, Wumaier Z et al (2011) A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I. Biochem J 437:279–288

    PubMed  CAS  Google Scholar 

  10. Szklarczyk R, Wanschers BF, Nabuurs SB, Nouws J, Nijtmans LG, Huynen MA (2011) NDUFB7 and NDUFA8 are located at the intermembrane surface of complex I. FEBS Lett 585:737–743

    PubMed  CAS  Google Scholar 

  11. Carroll J, Fearnley IM, Skehel JM et al (2005) The post-translational modifications of the nuclear encoded subunits of complex I from bovine heart mitochondria. Mol Cell Proteomics 4:693–699

    PubMed  CAS  Google Scholar 

  12. Carilla-Latorre S, Gallardo ME, Annesley SJ et al (2010) MidA is a putative methyltransferase that is required for mitochondrial complex I function. J Cell Sci 123:1674–1683

    PubMed  CAS  Google Scholar 

  13. De Rasmo D, Palmisano G, Scacco S et al (2010) Phosphorylation pattern of the NDUFS4 subunit of complex I of the mammalian respiratory chain. Mitochondrion 10:464–471

    PubMed  Google Scholar 

  14. Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394:627–634

    PubMed  CAS  Google Scholar 

  15. Chinta SJ, Andersen JK (2006) Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson’s disease. Free Radic Biol Med 41:1442–1448

    PubMed  CAS  Google Scholar 

  16. Belaiche C, Holt A, Saada A (2009) Nonylphenol ethoxylate plastic additives inhibit mitochondrial respiratory chain complex I. Clin Chem 55:1883–1884

    PubMed  CAS  Google Scholar 

  17. Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364:222–235

    Google Scholar 

  18. Bénit P, Slama A, Rustin P (2008) Decylubiquinol impedes mitochondrial respiratory chain complex I activity. Mol Cell Biochem 314:45–50

    PubMed  Google Scholar 

  19. Janssen RJ, Nijtmans LG, van den Heuvel LP, Smeitink JA (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29:499–515

    PubMed  CAS  Google Scholar 

  20. Valsecchi F, Koopman WJ, Manjeri GR, Rodenburg RJ, Smeitink JA, Willems PH (2010) Complex I disorders: causes, mechanisms, and development of treatment strategies at the cellular level. Dev Disabil Res Rev 16:175–182

    PubMed  Google Scholar 

  21. Schon EA (2000) Mitochondrial genetics and disease. Trends Biochem Sci 25:555–560

    PubMed  CAS  Google Scholar 

  22. Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta 1604: 135–150

    PubMed  CAS  Google Scholar 

  23. Wiedemann N, Frazier AE, Pfanner N (2004) The protein import machinery of mitochondria. J Biol Chem 279: 14473–14476

    PubMed  CAS  Google Scholar 

  24. Kuffner R, Rohr A, Schmiede A, Krull C, Schulte U (1998) Involvement of two novel chaperones in the assembly of mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Mol Biol 283: 409–417

    PubMed  CAS  Google Scholar 

  25. Dunning CJ, McKenzie M, Sugiana C et al (2007) Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J 26:3227–3237

    PubMed  CAS  Google Scholar 

  26. Ogilvie I, Kennaway NG, Shoubridge EA (2005) A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J Clin Invest 115:2784–27842

    PubMed  CAS  Google Scholar 

  27. Pagliarini DJ, Calvo SE, Chang B et al (2008) Mootha, A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    PubMed  CAS  Google Scholar 

  28. Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT (2012) Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta 1817(6):851–862 (PMID: 21924235)

    PubMed  CAS  Google Scholar 

  29. McKenzie M, Tucker EJ, Compton AG et al (2011) Mutations in the gene encoding C8orf38 block complex I assembly by inhibiting production of the mitochondria-encoded subunit ND1. J Mol Biol 414(3):413–462 (PMID: 22019594)

    PubMed  CAS  Google Scholar 

  30. Saada A, Edvardson S, Rapoport M et al (2008) C6ORF66 is an assembly factor of mitochondrial complex I. Am J Hum Genet 82:32–38

    PubMed  CAS  Google Scholar 

  31. Saada A, Vogel RO, Hoefs SJ et al (2009) Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. Am J Hum Genet 84:718–727

    PubMed  CAS  Google Scholar 

  32. Sugiana C, Pagliarini DJ, McKenzie M et al (2008) Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 83:468–478

    PubMed  CAS  Google Scholar 

  33. Nouws J, Nijtmans L, Houten SM et al (2010) Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab 12:283–294

    PubMed  CAS  Google Scholar 

  34. Calvo SE, Tucker EJ, Compton AG et al (2010) High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 42:851–858

    PubMed  CAS  Google Scholar 

  35. Fassone E, Duncan AJ, Taanman JW et al (2010) FOXRED1, encoding an FAD-dependent oxidoreductase complex-I-specific molecular chaperone, is mutated in infantile-onset mitochondrial encephalopathy. Hum Mol Genet 19:4837–4847

    PubMed  CAS  Google Scholar 

  36. Vogel RO, Janssen RJ, van den Brand MA et al (2007) Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Genes Dev 21:615–624

    PubMed  CAS  Google Scholar 

  37. Ugalde C, Janssen RJ, van den Heuvel LP, Smeitink JA, Nijtmans LG (2004) Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet 13:659–667

    PubMed  CAS  Google Scholar 

  38. Vogel RO, Dieteren CE, van den Heuvel LP et al (2007) Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits. J Biol Chem 282:7582–7590

    PubMed  CAS  Google Scholar 

  39. Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT (2007) Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 27:4228–42237

    PubMed  CAS  Google Scholar 

  40. Dieteren CE, Willems PH, Vogel RO et al (2008) Subunits of mitochondrial complex I exist as part of matrix- and membrane-associated subcomplexes in living cells. J Biol Chem 283:34753–34761

    PubMed  CAS  Google Scholar 

  41. Wessels HJ, Vogel RO, van den Heuvel L et al (2009) LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of protein complexes. Proteomics 9:4221–4228

    PubMed  CAS  Google Scholar 

  42. Perales-Clemente E, Fernández-Vizarra E et al (2010) Five entry points of the mitochondrially encoded subunits in mammalian complex I assembly. Mol Cell Biol 30:3038–3047

    PubMed  CAS  Google Scholar 

  43. Sheftel D, Stehling O, Pierik AJ et al (2009) Human Ind1, an iron–sulfur cluster assembly factor for respiratory complex I. Mol Cell Biol 29: 6059–6073

    PubMed  CAS  Google Scholar 

  44. Fontanesi F, Soto IC, Horn D, Barrientos A (2006) Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am J Physiol Cell Physiol 291: 1129–1147

    Google Scholar 

  45. Saada A, Edvardson S, Shaag A et al (2012) Combined OXPHOS complex I and IV defect, due to mutated complex I assembly factor C20ORF7. J Inherit Metab Dis 35(1):125–131 (PMID: 21607760)

    PubMed  CAS  Google Scholar 

  46. Wegrzyn J, Potla R, Chwae YJ et al (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797

    PubMed  CAS  Google Scholar 

  47. Martinvalet D, Dykxhoorn DM, Ferrini R, Lieberman J (2008) Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death. Cell 133:681–692

    PubMed  CAS  Google Scholar 

  48. Vahsen N, Candé C, Brière JJ et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    PubMed  CAS  Google Scholar 

  49. Ghezzi D, Sevrioukova I, Invernizzi F et al (2010) Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet 86:639–649

    PubMed  CAS  Google Scholar 

  50. Liu S, Lee YF, Chou S et al (2011) Mice lacking TR4 nuclear receptor develop mitochondrial myopathy with deficiency in complex I. Mol Endocrinol 25:1301–1310

    PubMed  CAS  Google Scholar 

  51. Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF (2004) The epidemiology of mitochondrial disorders—past, present and future. Biochim Biophys Acta 1659: 115–120

    PubMed  CAS  Google Scholar 

  52. Skladal D, Halliday J, Thorburn DR (2003) Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126:1905–1912

    PubMed  Google Scholar 

  53. Morgan-Hughes JA, Darveniza P, Landon DN, Land JM, Clark JB (1979) A mitochondrial myopathy with a deficiency of respiratory chain NADH-CoQ reductase activity. J Neurol Sci 43: 27–46

    PubMed  CAS  Google Scholar 

  54. Valsecchi F, Koopman WJ, Manjeri GR, Rodenburg RJ, Smeitink JA, Willems PH (2010) Complex I disorders: causes, mechanisms, and development of treatment strategies at the cellular level. Dev Disabil Res Rev 16:175–182

    PubMed  Google Scholar 

  55. Pitkanen S, Feigenbaum A, Laframboise R, Robinson BH (1996) NADH-coenzyme Q reductase (complex I) deficiency: heterogeneity in phenotype and biochemical findings. J Inherit Metab Dis 19: 675–686

    PubMed  CAS  Google Scholar 

  56. Kirby DM, Crawford M, Cleary MA, Dahl HH, Dennett X, Thorburn DR (1999) Respiratory chain complex I deficiency: an underdiagnosed energy generation disorder. Neurology 52: 1255–1264

    PubMed  CAS  Google Scholar 

  57. Vilain C, Rens C, Aeby A et al (2011) A novel NDUFV1 gene mutation in complex I deficiency in consanguineous siblings with brainstem lesions and Leigh syndrome. Clin Genet. doi:10.1111

    Google Scholar 

  58. Rustin P, Chretien D, Bourgeron T et al (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    PubMed  CAS  Google Scholar 

  59. Janssen AJ, Smeitink JAM, van den Heuvel LWPJ (2003) Some practical aspects of providing a diagnostic service for respiratory chain defects. Ann Clin Biochem 40:3–8

    PubMed  CAS  Google Scholar 

  60. Saada A, Bar-Meir M, Belaiche C, Miller C, Elpeleg O (2004) Evaluation of enzymatic assays and compounds affecting ATP production in mitochondrial respiratory chain complex I deficiency. Anal Biochem 335:66–72

    PubMed  CAS  Google Scholar 

  61. Jonckheere AI, Huigsloot M, Janssen AJ et al (2010) High-throughput assay to measure oxygen consumption in digitonin-permeabilized cells of patients with mitochondrial disorders. Clin Chem 56:424–431

    PubMed  CAS  Google Scholar 

  62. Suomalainen A, Elo JM, Pietiläinen KH et al (2011) FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol 10(9):806–818

    PubMed  CAS  Google Scholar 

  63. Lebre AS, Rio M, Faivre d’Arcier L, Vernerey D, Landrieu P, Slama A et al (2011) A common pattern of brain MRI imaging in mitochondrial diseases with complex I deficiency. Med Genet 48:16–23

    CAS  Google Scholar 

  64. Wallace DC (1994) Mitochondrial DNA mutations in diseases of energy metabolism. J Bioenerg Biomembr 26:2412–2450

    Google Scholar 

  65. Mitchell AL, Elson JL, Howell N, Taylor RW, Turnbull DM (2006) Sequence variation in mitochondrial complex I genes: mutationor polymorphism? J Med Genet 43, 175–179

    PubMed  CAS  Google Scholar 

  66. Loeffen J, Smeitink J, Triepels R et al (1998) The first nuclear-encoded complex I mutation in a patient with Leigh syndrome. Am J Hum Genet 63:1598–1608

    PubMed  CAS  Google Scholar 

  67. Schuelke M, Smeitink J, Mariman E et al (1999) Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Nat Genet 21:260–261

    PubMed  CAS  Google Scholar 

  68. Bénit P, Chretien D, Kadhom N et al (2001) Large-scale deletion and point mutations of the nuclear NDUFV1 and NDUFS1 genes in mitochondrial complex I deficiency. Am J Hum Genet 68:1344–1352

    PubMed  Google Scholar 

  69. Laugel V, This-Bernd V, Cormier-Daire V, Speeg-Schatz C, de Saint-Martin A, Fischbach M (2007) Early-onset ophthalmoplegia in Leigh-like syndrome due to NDUFV1 mutations. Pediatr Neurol 36:54–57

    PubMed  Google Scholar 

  70. Bénit P, Beugnot R, Chretien D et al (2003) Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Hum Mutat 21:582–586

    PubMed  Google Scholar 

  71. Pagniez-Mammeri H, Lombes A, Brivet M et al (2009) Rapid screening for nuclear genes mutations in isolated respiratory chain complex I defects. Mol Genet Metab 96:196–200

    PubMed  CAS  Google Scholar 

  72. Martín MA, Blázquez A, Gutierrez-Solana LG et al (2005) Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene. Arch Neurol 62:659–661

    PubMed  Google Scholar 

  73. Bugiani M, Invernizzi F, Alberio S et al (2004) Clinical and molecular findings in children with complex I deficiency. Biochim Biophys Acta 1659:136–147

    PubMed  CAS  Google Scholar 

  74. Hoefs SJ, Skjeldal OH, Rodenburg RJ et al (2010) Novel mutations in the NDUFS1 gene cause low residual activities in human complex I deficiencies. Mol Genet Metab 100:251–256

    PubMed  CAS  Google Scholar 

  75. Pagniez-Mammeri H, Landrieu P, Legrand A, Slama A (2010) Leukoencephalopathy with vanishing white matter caused by compound heterozygous mutations in mitochondrial complex I NDUFS1 subunit. Mol Genet Metab 101:297–298

    PubMed  CAS  Google Scholar 

  76. Ferreira M, Torraco A, Rizza T et al (2011) Progressive cavitating leukoencephalopathy associated with respiratory chain complex I deficiency and a novel mutation in NDUFS1. Neurogenetics 12:9–17

    PubMed  CAS  Google Scholar 

  77. Loeffen J, Elpeleg O, Smeitink J el al (2001) Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy. Ann Neurol 49:195–201

    PubMed  CAS  Google Scholar 

  78. Ngu LH, Nijtmans LG, Distelmaier F et al (2012) A catalytic defect in mitochondrial respiratory chain complex I due to a mutation in NDUFS2 in a patient with Leigh syndrome. Biochim Biophys Acta 1822(2):169–175 (PMID: 22036843)

    Google Scholar 

  79. Tuppen HA, Hogan VE, He L et al (2010) The p.M292T NDUFS2 mutation causes complex I-deficient Leigh syndrome in multiple families. Brain 133:2952–2963

    PubMed  Google Scholar 

  80. Bénit P, Slama A, Cartault F et al (2004) Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J Med Genet 41:14–7

    PubMed  Google Scholar 

  81. Triepels RH, van den Heuvel LP, Loeffen JL et al (1999) Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann Neurol 45:787–790

    PubMed  CAS  Google Scholar 

  82. Lebon S, Rodriguez D, Bridoux D et al (2007) A novel mutation in the human complex I NDUFS7 subunit associated with Leigh syndrome. Mol Genet Metab 90:379–382

    PubMed  CAS  Google Scholar 

  83. Procaccio V, Wallace DC (2004) Late-onset Leigh syndrome in a patient with mitochondrial complex I NDUFS8 mutations. Neurol 62:1899–1901

    Google Scholar 

  84. van den Heuvel L, Ruitenbeek W, Smeets R et al (1998) Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am J Hum Genet 62:262–268

    PubMed  Google Scholar 

  85. Petruzzella V, Vergari R, Puzziferri I et al (2001) A nonsense mutation in the NDUFS4 gene encoding the 18 kDa (AQDQ) subunit of complex I abolishes assembly and activity of the complex in a patient with Leigh-like syndrome. Hum Mol Genet 10:529–535

    PubMed  CAS  Google Scholar 

  86. Budde SM, van den Heuvel LP, Janssen AJ et al (2000) Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene. Biochem Biophys Res Commun 275:63–68

    PubMed  CAS  Google Scholar 

  87. Bénit P, Steffann J, Lebon S, Chretien D et al (2003) Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt −1) in the NDUFS4 gene in Leigh syndrome. Hum Genet 112:563–566

    PubMed  Google Scholar 

  88. Anderson SL, Chung WK, Frezzo J et al (2008) A novel mutation in NDUFS4 causes Leigh syndrome in an Ashkenazi Jewish family. J Inherit Metab Dis 2(31 Suppl):461–467

    Google Scholar 

  89. Leshinsky-Silver E, Lebre AS, Minai L et al (2009) NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement. Mol Genet Metab 97:185–189

    PubMed  CAS  Google Scholar 

  90. Kirby DM, Salemi R, Sugiana C et al (2004) NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. J Clin Invest 114:837–845

    PubMed  CAS  Google Scholar 

  91. Spiegel R, Shaag A, Mandel H, Reich D et al (2009) Mutated NDUFS6 is the cause of fatal neonatal lactic acidemia in Caucasus Jews. Eur J Hum Genet 17:1200–1203

    PubMed  CAS  Google Scholar 

  92. Fernandez-Moreira D, Ugalde C, Smeets R et al (2007) X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy. Ann Neurol 61: 73–83

    PubMed  CAS  Google Scholar 

  93. Mayr JA, Bodamer O, Haack TB et al (2011) Heterozygous mutation in the X chromosomal NDUFA1 gene in a girl with complex I deficiency. Mol Genet Metab 103:358–261

    PubMed  CAS  Google Scholar 

  94. Potluri P, Davila A, Ruiz-Pesini E et al (2009) A novel NDUFA1 mutation leads to a progressive mitochondrial complex I-specific neurodegenerative disease. Mol Genet Metab 96:189–195

    PubMed  CAS  Google Scholar 

  95. Hoefs SJ, Dieteren CE, Distelmaier F et al (2008) NDUFA2 complex I mutation leads to Leigh disease. Am J Hum Genet 82(6):1306–1315

    PubMed  CAS  Google Scholar 

  96. Hoefs SJ, van Spronsen FJ, Lenssen EW et al (2011) NDUFA10 mutations cause complex I deficiency in a patient with Leigh disease. Eur J Hum Genet 19:270–274

    PubMed  Google Scholar 

  97. Berger I, Hershkovitz E, Shaag A, Edvardson S, Saada A, Elpeleg O (2008) Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation. Ann Neurol. 63:405–408

    PubMed  CAS  Google Scholar 

  98. Ostergaard E, Rodenburg RJ, van den Brand M et al (2011) Respiratory chain complex I deficiency due to NDUFA12 mutations as a new cause of Leigh syndrome. Med Genet 48:737–740

    CAS  Google Scholar 

  99. Pagniez-Mammeri H, Rak M, Legrand A, Benit, P, Rustin, P, Slama, A (2012) Mitochondrial complex I deficiency of nuclear origin. II. Non-structural genes. Mol Genet Metab 105(2):173–179. doi:10.1016/j.ymgme.2011.10.001

    PubMed  CAS  Google Scholar 

  100. Fassone E, Taanman JW, Hargreaves IP et al (2011) Mutations in the mitochondrial complex I assembly factor NDUFAF1 cause fatal infantile hypertrophic cardiomyopathy. J Med Genet 48:691–697

    PubMed  CAS  Google Scholar 

  101. Herzer M, Koch J, Prokisch H, Rodenburg R et al (2010) Leigh disease with brainstem involvement in complex I deficiency due to assembly factor NDUFAF2 defect. Neuropediatr 41:30–34

    CAS  Google Scholar 

  102. Barghuti F, Elian K, Gomori JM et al (2008) The unique neuroradiology of complex I deficiency due to NDUFA12L defect. Mol Genet Metab 94:78–82

    PubMed  CAS  Google Scholar 

  103. Gerards M, Sluiter W, van den Bosch BJ et al (2010) Defective complex I assembly due to C20orf7 mutations as a new cause of Leigh syndrome. J Med Genet 507–512

    Google Scholar 

  104. Haack TB, Danhauser K, Haberberger B et al (2010) Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 42:1131–1134

    PubMed  CAS  Google Scholar 

  105. Gerards M, van den Bosch BJ, Danhauser K et al (2011) Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene. Brain 134:210–219

    PubMed  Google Scholar 

  106. Berger I, Ben-Neriah Z, Dor-Wolman T et al (2011) Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing. Mol Genet Metab 104(4):517–520 (PMID: 22019070)

    PubMed  CAS  Google Scholar 

  107. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed  CAS  Google Scholar 

  108. Esteitie N, Hinttala R, Wibom R et al (2005) Secondary metabolic effects in complex I deficiency. Ann Neurol 58:544–552

    PubMed  CAS  Google Scholar 

  109. Schapira AH (2010) Complex I: inhibitors, inhibition and neurodegeneration. Exp Neurol 224:331–335

    PubMed  CAS  Google Scholar 

  110. Coskun P, Wyrembak J, Schriner S et al (2012) A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta 1820(5):553–564 (PMID: 21871538)

    PubMed  CAS  Google Scholar 

  111. Rosenfeld M, Brenner-Lavie H, Ari SG, Kavushansky A, Ben-Shachar D (2011) Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry 69:980–988

    PubMed  CAS  Google Scholar 

  112. DiMauro S, Mancuso M (2007) Mitochondrial diseases: Therapeutic approaches. Biosci Rep 27:125–137

    PubMed  CAS  Google Scholar 

  113. Klopstock T, Yu-Wai-Man P, Dimitriadis K et al (2011) A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 134:2677–2686

    PubMed  Google Scholar 

  114. Snow BJ, Rolfe FL, Lockhart MM et al A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disord 25:1670–1674

    Google Scholar 

  115. Koopman WJ, Verkaart S, van Emst-de Vries SE et al (2008) Mitigation of NADH: ubiquinone oxidoreductase deficiency by chronic Trolox treatment. Biochim Biophys Acta 1777:853–859

    PubMed  CAS  Google Scholar 

  116. Bastin J, Aubey F, Rötig A, Munnich A, Djouadi F (2008) Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab 93:1433–1441

    PubMed  CAS  Google Scholar 

  117. Golubitzky A, Dan P, Weissman S, Link G, Wikstrom JD, Saada A (2011) Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveals AICAR as the most beneficial compound. PLoS ONE 6: E26883

    PubMed  CAS  Google Scholar 

  118. Grad LI, Lemire BD (2004) Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum Mol Genet 13:303–314

    PubMed  CAS  Google Scholar 

  119. Kruse SE, Watt WC, Marcinek DJ et al (2008) Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab 7:312–320

    PubMed  CAS  Google Scholar 

  120. Qi X, Lewin AS, Sun L, Hauswirth WW, Guy J (2004) SOD2 gene transfer protects against optic neuropathy induced by deficiency of complex I. Ann Neurol 182–191

    Google Scholar 

  121. Bénit P, Goncalves S, Dassa EP, Brière JJ, Rustin P(2008) The variability of the harlequin mouse phenotype resembles that of human mitochondrial-complex I-deficiency syndromes. PLoS ONE 3: E3208

    PubMed  Google Scholar 

Download references

Acknowledgments

The author is supported by research grants from the Israel Science Foundation and by the Chief Scientist Office Ministry of Health Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Saada (Reisch) Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Saada (Reisch), A. (2013). Complex Subunits and Assembly Genes: Complex I. In: Wong, LJ. (eds) Mitochondrial Disorders Caused by Nuclear Genes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3722-2_12

Download citation

Publish with us

Policies and ethics