Efficiency Limits for Solar Spectrum Rectification

  • Saumil Joshi
  • Sachit Grover
  • Garret Moddel


Optical rectennas are antennas coupled to high-speed diodes used to convert high-frequency optical radiation to DC. Rectennas have been viewed as alternatives to conventional p-n junction solar cells, with the potential of exceeding the Shockley-Queisser conversion efficiency limit of 33 %. Using the theory of photon-assisted tunneling, we analyze the efficiency limits and show that rectennas can achieve efficiencies up to 100 % under monochromatic illumination. For broadband solar illumination, we find that the diode operating voltage plays the role that bandgap plays in conventional solar cells. We study the effects of poor antenna/diode matching and diode reverse leakage currents showing the importance of careful diode design. We highlight the correspondence between rectification in the classical and quantum limits.


Operating Voltage Efficiency Limit Reverse Leakage Junction Solar Cell Reverse Leakage Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brown WC. Adapting microwave techniques to help solve future energy problems. IEEE Trans Microw Theory Tech. 1973;21:753–63.CrossRefGoogle Scholar
  2. 2.
    Bailey RL. Proposed new concept for a solar-energy converter. J Eng Power. 1972;94:73–7.CrossRefGoogle Scholar
  3. 3.
    Small JG, Elchinger GM, Javan A, Sanchez A, Bachner FJ, Smythe DL. AC electron tunneling at infrared frequencies: thin‐film M-O-M diode structure with broad‐band characteristics. Appl Phys Lett. 1974;24:275–9.CrossRefGoogle Scholar
  4. 4.
    Shockley W, Queisser HJ. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys. 1961;32:510–9.CrossRefGoogle Scholar
  5. 5.
    McSpadden JO, Fan L, Chang K. Design and experiments of a high-conversion-efficiency 5.8-Ghz rectenna. IEEE Trans Microw Theory Tech. 1998;46:2053–60.CrossRefGoogle Scholar
  6. 6.
    Landsberg PT, Tonge G. Thermodynamics of the conversion of diluted radiation. J Phys A Math Gen. 1979;12:551–62.CrossRefGoogle Scholar
  7. 7.
    Grover S, Moddel G. Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J Photovoltaics. 2011;1:78–83.CrossRefGoogle Scholar
  8. 8.
    Eliasson BJ. Metal-insulator-metal diodes for solar energy conversion. Ph.D. Thesis, University of Colorado; 2001.Google Scholar
  9. 9.
    Berland B. Subcontractor report. National Renewable Energy Laboratory. Subcontractor Report 2003; NREL/SR-520-33263.Google Scholar
  10. 10.
    Grover S, Moddel G. Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers. Solid State Electron. 2012;67:94–9.CrossRefGoogle Scholar
  11. 11.
    Miskovsky NM, Cutler PH, Mayer A, Weiss BL, Willis B, Sullivan TE, Lerner PB. Nanoscale devices for rectification of high frequency radiation from the infrared through the visible: a new approach. J Nanotechnol. 2012;2012:1–19.CrossRefGoogle Scholar
  12. 12.
    Grover S, Dmitriyeva O, Estes MJ, Moddel G. Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans Nanotechnol. 2010;9:716–22.CrossRefGoogle Scholar
  13. 13.
    Moddel G, Zhu Z, Grover S, Joshi S. Ultrahigh speed graphene diode with reversible polarity. Solid State Commun. 2012;152:1842–5.CrossRefGoogle Scholar
  14. 14.
    Sokolov IM. On the energetics of a nonlinear system rectifying thermal fluctuations. Europhys Lett. 1998;44:278–83.CrossRefGoogle Scholar
  15. 15.
    Sanchez A, Davis CF, Liu KC, Javan A. The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies. J Appl Phys. 1978;49:5270–7.CrossRefGoogle Scholar
  16. 16.
    Corkish R, Green M, Puzzer T. Solar energy collection by antennas. Sol Energy. 2002;73:395–401.CrossRefGoogle Scholar
  17. 17.
    Joshi S, Moddel G. Efficiency limits of rectenna solar cells: theory of broadband photon-assisted tunneling. Appl Phys Lett. 2013;102:083901.CrossRefGoogle Scholar
  18. 18.
    Grover S, Joshi S, Moddel G. Quantum theory of operation for rectenna solar cells. J Phys D Appl Phys. 2013;46:135106.CrossRefGoogle Scholar
  19. 19.
    Tien PK, Gordon JP. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys Rev. 1963;129:647–51.CrossRefGoogle Scholar
  20. 20.
    Dayem AH, Martin RJ. Quantum interaction of microwave radiation with tunneling between superconductors. Phys Rev Lett. 1962;8:246–8.CrossRefGoogle Scholar
  21. 21.
    Tucker JR, Feldman MJ. Quantum detection at millimeter wavelengths. Rev Mod Phys. 1985;57:1055–113.CrossRefGoogle Scholar
  22. 22.
    Tucker J. Quantum limited detection in tunnel junction mixers. IEEE J Quantum Electron. 1979;15:1234–58.CrossRefGoogle Scholar
  23. 23.
    Grover S. Diodes for optical rectennas. Ph.D. Thesis, University of Colorado; 2011.Google Scholar
  24. 24.
    Mashaal H, Gordon JM. Fundamental bounds for antenna harvesting of sunlight. Opt Lett. 2011;36:900–2.CrossRefGoogle Scholar
  25. 25.
    Trivich D, Flinn PA. Maximum efficiency of solar energy conversion by quantum processes. In: Daniels F, Duffie JA, editors. Solar energy research. Madison: The University of Wisconsin Press; 1955.Google Scholar
  26. 26.
    Hamilton CA, Shapiro S. RF-induced effects in superconducting tunnel junctions. Phys Rev B. 1970;2:4494–503.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electrical, Computer, and Energy EngineeringUniversity of ColoradoBoulderUSA
  2. 2.National Center for Photovoltaics, National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations