Thermophotovoltaics: An Alternative to and Potential Partner with Rectenna Energy Harvesters

  • Dante F. DeMeo
  • Abigail S. Licht
  • Corey M. Shemelya
  • Chandler M. Downs
  • Thomas E. Vandervelde


A technology that can be used in place of, or in addition to, rectennas is thermophotovoltaics (TPVs). The ultimate function of TPVs, like that of the rectenna, is the conversion of electromagnetic radiation to DC current. Rectennas use a rectifying diode coupled with an antenna to achieve this conversion. TPVs achieve this conversion through a single diode which both receive the radiation and converts it to a current. While rectennas are superior at longer wavelengths (greater than 5 μm), TPVs are more efficient at shorter wavelengths (less than 5 μm). Although rectennas and TPVs have been investigated independently, a hybrid technology may be possible which incorporates components from both technologies.


Internal Quantum Efficiency High Conversion Efficiency Broadband Emitter Indium Arsenide Plasma Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Harder NN-P, Wurfel P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond Sci Tech. 2003;18:S151–7.CrossRefGoogle Scholar
  2. 2.
    Swanson RM. A proposed thermophotovoltaic solar energy conversion system. Proc IEEE. 1979;67:446–7.CrossRefGoogle Scholar
  3. 3.
    Spirkl W, Ries H. Solar thermophotovoltaics: an assessment. J Appl Phys. 1985;57:4409–14.CrossRefGoogle Scholar
  4. 4.
    Davies PA, Luque A. Solar thermophotovoltaics: brief review and a new look. Sol Energ Mater Sol Cell. 1994;33:11–22.CrossRefGoogle Scholar
  5. 5.
    Rephaeli E, Fan S. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt Express. 2009;17:15145–59.CrossRefGoogle Scholar
  6. 6.
    Luque A. Solar thermophotovoltaics: combining solar thermal and photovoltaics. AIP Conf Proc. 2007;890:3–16.CrossRefGoogle Scholar
  7. 7.
    Badescu V. Upper bounds for solar thermophotovoltaic efficiency. Renew Energ. 2005;30:211–25.CrossRefGoogle Scholar
  8. 8.
    Edenburn MW. Analytical evaluation of a solar thermophotovoltaic (TPV) converter. Sol Energ. 1980;24:367–71.CrossRefGoogle Scholar
  9. 9.
    Martín D, Algora C, Corregidor V, Datas A. Development of GaSb photoreceiver arrays for solar thermophotovoltaic systems. J Sol Energ Eng. 2007;129:283.CrossRefGoogle Scholar
  10. 10.
    Andreev VM, Vlasov AS, Khvostikov VP, Khvostikova OA, Gazaryan PY, Sadchikov NA, Rumyantsev VD. Solar thermophotovoltaic converter with Fresnel lens and GaSb cells. 2006 I.E. 4th world conference on photovoltaic energy conference; 2006. p. 644–7.Google Scholar
  11. 11.
    Andreev VM, Khvostikov VP, Khvostikova OA, Vlasov AS, Gazaryan PY, Sadchikov NA, Rumyantsev VD. Solar thermophotovoltaic system with high temperature tungsten emitter. Conference record of the thirty-first IEEE photovoltaic specialists conference. IEEE; 2005. p. 671–4.Google Scholar
  12. 12.
    Demichelis F, Minetti-Mezzetti E. A solar thermophotovoltaic converter. Sol Cell. 1980;1:395–403.CrossRefGoogle Scholar
  13. 13.
    Day ACC, Horne WEE, Morgan MDD. Application of the GaSb solar cell in isotope-heated power systems. IEEE conference on photovoltaic specialists. IEEE; 1990. p. 1320–5.Google Scholar
  14. 14.
    Teofilo VL, Choong P, Chang J, Tseng Y-L, Ermer S. Thermophotovoltaic energy conversion for space. J Phys Chem C. 2008;112:7841–5.CrossRefGoogle Scholar
  15. 15.
    Schock A, Mukunda M, Or C, Summers G. Design, analysis, and optimization of a radioisotope thermophotovoltaic (RTPV) generator, and its applicability to an illustrative space mission. Acta Astronautica. 1995;37:21–57.CrossRefGoogle Scholar
  16. 16.
    Boeing Defense and Space Group. Thermophotovoltaic thermal-to-electric conversion systems report. Final report to jet propulsion laboratory on contract 959595. 1993.Google Scholar
  17. 17.
    Anderson DJ. NASA radioisotope power conversion technology NRA overview. AIP Conf Proceed. 2005;2005–5713:421–8.Google Scholar
  18. 18.
    Anderson DJ, Sankovic J, Wilt D, Abelson RD, Fleurial J-P. NASA’s advanced radioisotope power conversion technology development status. 2007 I.E. aerospace conference. IEEE; 2007. p. 1–20.Google Scholar
  19. 19.
    Bauer T. The potential of thermophotovoltaic heat recovery for the glass industry. AIP conference proceedings. AIP; 2003. p. 101–10.Google Scholar
  20. 20.
    BCS Incorporated Waste Heat Recovery: Technology and Opportunities in U.S. Industry. Department of Energy (US).Google Scholar
  21. 21.
    Office of Industrial Technologies Energy Efficiency and Renewable Energy, U.D. of E. Thermophotovoltaic electric power generation using exhaust heat; 2001.Google Scholar
  22. 22.
    Yugami H, Sasa H, Yamaguchi M. Thermophotovoltaic systems for civilian and industrial applications in Japan. Semicond Sci Technol. 2003;18:S239–46.CrossRefGoogle Scholar
  23. 23.
    Mahorter RG, Wernsman B, Thomas RM, Siergiej RR. Thermophotovoltaic system testing. Semicond Sci Technol. 2003;18:S232–8.CrossRefGoogle Scholar
  24. 24.
    Nagpal P, Han SE, Stein A, Norris DJ. Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals. Nano Lett. 2008;8:3238–43.CrossRefGoogle Scholar
  25. 25.
    Wernsman B, Siergiej RR, Link SD, Mahorter RG, Palmisiano MN, Wehrer RJ, Schultz RW, Schmuck GP, Messham RL, Murray S, Murray CS, Newman F, Taylor D, DePoy DM, Rahmlow T. Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control. 2004.Google Scholar
  26. 26.
    Khvostikov VP, Rastegaeva MG, Khvostikova OA, Sorokina SV, Malevskaya AV, Shvarts MZ, Andreev AN, Davydov DV, Andreev VM. High-efficiency (49%) and high-power photovoltaic cells based on gallium antimonide. Semiconductors. 2006;40:1242–6.CrossRefGoogle Scholar
  27. 27.
    Brown W. Electronic and mechanical improvement of the receiving terminal of a free-space microwave power transmission system. NASA STI/Recon Technical Report N. 1977.Google Scholar
  28. 28.
    Brown WC, Triner JF. Experimental thin-film, etched-circuit rectenna. MTT-S international microwave symposium digest. 1982. p. 185–7. MTT005.Google Scholar
  29. 29.
    Yoo T-W, Chang K. Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans Microwave Theory Tech. 1992;40:1259–66.CrossRefGoogle Scholar
  30. 30.
    Corkish R, Green M, Puzzer T. Solar energy collection by antennas. Sol Energ. 2002;73:395–401.CrossRefGoogle Scholar
  31. 31.
    Goswami DY, Vijayaraghavan S, Lu S, Tamm G. New and emerging developments in solar energy. Sol Energ. 2004;76:33–43.CrossRefGoogle Scholar
  32. 32.
    Avery JE, Fraas LM, Sundaram VS, Mansoori N, Yerkes JW, Brinker DJ, Curtis HB, O’Neill MJ. Lightweight concentrator module with 30% AM0 efficient GaAs/GaSb tandem cells. IEEE conference on photovoltaic specialists. IEEE. p. 1277–81.Google Scholar
  33. 33.
    Qiu K, Hayden a. Development of a silicon concentrator solar cell based TPV power system. Energ Convers Manag. 2006;47:365–76.CrossRefGoogle Scholar
  34. 34.
    Bitnar B, Durisch W, Grutzmacher D, Mayor J-C, Muller C, von Roth F, Selvan JAA, Sigg H, Tschudi HR, Gobrecht J. A TPV system with silicon photocells and a selective emitter. Conference record of the twenty-eighth IEEE photovoltaic specialists conference. IEEE; 2000. p. 1218–21.Google Scholar
  35. 35.
    Sze SM. Physics of semiconductor devices. New York: Wiley; 1981.Google Scholar
  36. 36.
    Bett AW, Sulima OV. GaSb photovoltaic cells for applications in TPV generators. Semicond Sci Technol. 2003;18:S184–90.CrossRefGoogle Scholar
  37. 37.
    Gagis GS, Vasil’ev VI, Deryagin AG, Dudelev VV, Maslov AS, Levin RV, Pushnyi BV, Smirnov VM, Sokolovskii GS, Zegrya GG, Kuchinskii VI. Novel materials GaInAsPSb/GaSb and GaInAsPSb/InAs for room-temperature optoelectronic devices for a 3–5 μm wavelength range (GaInAsPSb/GaSb and GaInAsPSb/InAs for 3–5 μm). Semicond Sci Technol. 2008;23:125026.CrossRefGoogle Scholar
  38. 38.
    Wang CA. Antimony based III-V thermophotovoltaic devices. Contract. 2004.Google Scholar
  39. 39.
    Mauk MG, Shellenbarger ZA, Cox JA, Tata AN, Warden TG, Dinetta LC, Mueller RL. Advances in low-bandgap InAsSbP/InAs and GaInAsSb/GaSb thermophotovoltaics. Conference record of the twenty-eighth IEEE photovoltaic specialists conference–2000 (Cat. No.00CH37036). 2000. p. 1028–31.Google Scholar
  40. 40.
    Mauk MG, Andreev VM. GaSb-related materials for TPV cells. Semicond Sci Technol. 2003;18:S191–201.CrossRefGoogle Scholar
  41. 41.
    Wanlass MW, Ahrenkiel SP, Ahrenkiel RK, Carapella JJ, Wehrer RJ, Wernsman B. Recent advances in low-bandgap, InP-based GaInAs/InAsP materials and devices for thermophotovoltaic (TPV) energy conversion. Thermophotovoltaic generation of electricity: sixth conference on thermophotovoltaic generation of electricity: TPV6. AIP conference proceedings. AIP; 2004. p. 427–35.Google Scholar
  42. 42.
    Fraas LM, Sundaram VS, Avery JE, Gruenhaum PE, Malocsay E. III-V solar cells and doping processes. 1993.Google Scholar
  43. 43.
    Schlegl T, Dimroth F, Ohm A, Bett AW. TPV modules based on GaSb structures. AIP conference proceedings. TPV6: sixth world conference on thermophotovoltaic generation of electricity. 2004;738: 285–93.Google Scholar
  44. 44.
    Schlegl T, Abbott P, Riesen S van, Bett, AW. Degradation study of MOVPE-grown and zinc-diffused GaSb cells for thermophotovoltaic applications. AIP conference proceedings. AIP; 2004. p. 387–95.Google Scholar
  45. 45.
    Vos A, Pauwels H. On the thermodynamic limit of photovoltaic energy conversion. Appl Phys. 1981;25:119–25.CrossRefGoogle Scholar
  46. 46.
    Andreev VM, Khvostikov VP, Rumyantsev VD, Sorokina SV, Shvarts MZ. Single-junction GaSb and tandem GaSb/InGaAsSb and AlGaAsSb/GaSb thermophotovoltaic cells. Conference record of the twenty-eighth IEEE photovoltaic specialists conference–2000 (Cat. No.00CH37036). IEEE; 2000. p. 1265–8.Google Scholar
  47. 47.
    Bhusal L, Freindlich A. Triple and quadruple junctions thermophotovoltaic devices lattice matched to InP. Materials research society symposium proceedings. 2006.Google Scholar
  48. 48.
    Wilt D, Wehrer R, Palmisiano M, Wanlass M, Murray C. Monolithic interconnected modules (MIMs) for thermophotovoltaic energy conversion. Semicond Sci Technol. 2003;18:S209–15.CrossRefGoogle Scholar
  49. 49.
    Fatemi NS, Wilt DM, Jenkins PP, Weizer VG, Hoffman RW, Murray CS, Scheiman D, Brinker D, Riley D. InGaAs monolithic interconnected modules (MIMs). Conference record of the twenty sixth IEEE photovoltaic specialists conference–1997. IEEE; 1997. p. 799–804.Google Scholar
  50. 50.
    Wilt DM, Fatemi NS, Jenkins PP, Hoffman RW, Landis GA, Jain RK. Monolithically interconnected InGaAs TPV module development. Conference record of the twenty fifth IEEE photovoltaic specialists conference–1996. IEEE; 1996. p. 43–8.Google Scholar
  51. 51.
    Raynolds JE. Enhanced electro-magnetic energy transfer between a hot and cold body at close spacing due to evanescent fields. In: Coutts JT, Benner JP, Allman CS, editors. Thermophotovoltaic generation of electricity: 4th NREL conference. AIP Conference Proceedings, New York; 1999. p. 49–57.Google Scholar
  52. 52.
    Whale MD, Cravalho EG. Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Trans Energ Convers. 2002;17:130–42.CrossRefGoogle Scholar
  53. 53.
    Laroche M, Carminati R, Greffet J-J. Near-field thermophotovoltaic energy conversion. J Appl Phys. 2006;100:063704–34.Google Scholar
  54. 54.
    DiMatteo RS, Greiff P, Finberg SL, Young-Waithe KA, Choy HKH, Masaki MM, Fonstad CG. Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap. Appl Phys Lett. 2001;79:1894.CrossRefGoogle Scholar
  55. 55.
    DiMatteo RS, Greiff P, Finberg SL, Young-Waithe KA, Choy HKH, Masaki MM, Fonstad CG. Micron-gap thermophotovoltaics (MTPV). Thermophotovoltaic generation of electricity: fifth conference on thermophotovoltaic generation of electricity. AIP conference proceedings. AIP; 2003. p. 232–40.Google Scholar
  56. 56.
    DiMatteo RS. Method and apparatus for the generation of charged carriers in semiconductor devices. 2000.Google Scholar
  57. 57.
    Dziendziel RJ, Baldasaro PF, DePoy DM. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system. 2012.Google Scholar
  58. 58.
    Fourspring P, DePoy D, Beausang J, Gratrix E, Kristensen R, Rahmlow T, Talamo P, Lazo-Wasem J, Wernsman, B. Thermophotovoltaic spectral control. 6th international conference on thermophotovoltaic generation of electricity. Amer Inst Physics; 2004. p. 171–9.Google Scholar
  59. 59.
    Vigil O, Ruiz CM, Seuret D, Bermúdez V, Diéguez E. Transparent conducting oxides as selective filters in thermophotovoltaic devices. J Phys Condens Matter. 2005;17:6377–84.CrossRefGoogle Scholar
  60. 60.
    Bauer T. Thermophotovoltaics: basic principles and critical aspects of system design. Berlin, Heidelberg: Springer; 2011.CrossRefGoogle Scholar
  61. 61.
    Coutts T. A review of progress in thermophotovoltaic generation of electricity. Renew Sustain Energ Rev. 1999;3:77–184.CrossRefGoogle Scholar
  62. 62.
    Hampe C. Untersuchung influenzierter und diffundierter pn-Übergänge von Terrestrikund Thermophotovoltaik-Siliciumsolarzellen (in German). 2002.Google Scholar
  63. 63.
    Wang CA. Wafer-bonded internal back-surface reflectors for enhanced TPV performance. AIP conference proceedings. AIP; 2003. p. 473–81.Google Scholar
  64. 64.
    Chubb DL. Fundamentals of thermophotovoltaic energy conversion. Amsterdam, Netherlands: Elsevier; 2007.Google Scholar
  65. 65.
    Andreev VM. An overview of TPV cell technologies. Proceeding of the 5th conference on thermophotovoltaic generation of electricity. Rome, Italy; 2002. p. 289–304.Google Scholar
  66. 66.
    Gevorkyan VA, Aroutiounian VM, Gambaryan KM, Arakelyan AH, Andreev IA, Golubev LV, Yakovlev YP, Wanlass MW. The growth of low band-gap InAsSbP based diode heterostructures for thermo-photovoltaic application. Proceeding of the 7th world conference on thermophotovoltaic generation of electricity. 2006. p. 165–73.Google Scholar
  67. 67.
    DeMeo DF, Vandervelde TE. Simulations of gallium antimonide (GaSb) p-B-n thermophotovoltaic cells. MRS Proceedings. 2011;1329Google Scholar
  68. 68.
    DeMeo DF, Vandervelde TE. Simulations of indium arsenide antimonide (InAs0.91Sb0.09) monovalent barrier-based thermophotovoltaic cells. 2011.Google Scholar
  69. 69.
    DeMeo DF, Vandervelde TE. Cryogenic thermal simulator for testing low temperature thermophotovoltaic cells. J Vac Sci Tech B. 2011;29: 031401.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dante F. DeMeo
    • 1
  • Abigail S. Licht
    • 1
  • Corey M. Shemelya
    • 1
  • Chandler M. Downs
    • 1
  • Thomas E. Vandervelde
    • 1
  1. 1.Renewable Energy and Applied Photonics LaboratoriesTufts UniversityMedfordUSA

Personalised recommendations