Skip to main content

Will Rectenna Solar Cells Be Practical?

  • Chapter
  • First Online:
Rectenna Solar Cells

Abstract

Optical rectennas are an attractive technology for high-efficiency, low-cost solar cells if several technological issues can be addressed. These devices combine submicron antennas with ultra-high speed diodes to rectify incident radiation. Visible light frequency operation requires a quantum approach to analyze the rectification process and design the devices. The small coherence area for sunlight limits the power per rectenna, which affects the conversion efficiency. In assessing the broadband ultimate efficiency obtainable from rectenna solar cells it turns out that operating voltage plays the same role that band gap energy plays in conventional solar cells, leading to a single cell limit of 44 %. Parallel plate diodes cannot provide the 0.1 fs RC time constant that is required to rectify visible light frequencies, and so other potential solutions such as traveling-wave diodes, sharp-tip diodes, or geometric diodes are required. Waste heat harvesting and thermophotovoltaics using optical rectennas would relax the RC constraints because the infrared frequencies are lower than those for visible light, but with substantial coherence impediments. With innovation and careful development rectenna solar cells have the potential to provide an exciting new photovoltaics technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Defined as the electric current that would result if each photon produced one electron charge.

  2. 2.

    In the usual spectral plots, the photon energy of the peak is not unique and depends upon the normalization—irradiance per unit wavelength or irradiance per unit photon energy. Therefore, a universal normalization of irradiance per unit fractional bandwidth [35] is used here instead.

  3. 3.

    It appears that energy recycling in TPV raises the limiting efficiency from the Landsberg efficiency to the Carnot efficiency, as pointed out by Pat Brady.

References

  1. Trivich D, Flinn PA. Maximum efficiency of solar energy conversion by quantum processes. In: Duffie JA, Daniels F, editors. Solar energy research. Madison: University of Wisconsin Press; 1955.

    Google Scholar 

  2. Shockley W, Queisser HJ. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys. 1961;32:510–9.

    Article  Google Scholar 

  3. Bailey RL. A proposed new concept for a solar-energy converter. J Eng Power. 1972;94:73–77.

    Google Scholar 

  4. Eliasson BJ. Metal-insulator-metal diodes for solar energy conversion. PhD Thesis. University of Colorado at Boulder. 2001.

    Google Scholar 

  5. Eliasson BJ, Moddel G. Metal-oxide electron tunneling device for solar energy conversion. US Patent 6,534,784. 2003.

    Google Scholar 

  6. Berland B. Photovoltaic technologies beyond the horizon: optical rectenna solar cell. Final report. NREL Report No. SR-520-33263; 2003.

    Google Scholar 

  7. Mashaal H, Gordon JM. Fundamental bounds for antenna harvesting of sunlight. Opt Lett. 2011;36:900–2.

    Article  Google Scholar 

  8. Grover S, Joshi S, Moddel G. Quantum theory of operation for rectenna solar cells. J Phys D: Appl Phys. 2013;46:135106.

    Article  Google Scholar 

  9. Tien PK, Gordon JP. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys Rev. 1963;129(2):647–51.

    Article  Google Scholar 

  10. Tucker JR. Quantum limited detection in tunnel junction mixers. IEEE J Quantum Electron. 1979;QE-15(11):1234–58.

    Article  Google Scholar 

  11. Heiblum M. Tunneling hot electron transfer amplifiers (THETA): amplifiers operating up to the infrared. Solid State Electron. 1981;24:343–66.

    Article  Google Scholar 

  12. Schnupp P. The tunneling time of an electtron and the image force. Thin Solid Films. 1968;2:177–83.

    Article  Google Scholar 

  13. de Arquer FPG, Volski V, Verellen N, Vandenbosch GAE, Moshchalkov VV. Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect. IEEE Trans Antennas Propag. 2011;59:3144–53.

    Article  Google Scholar 

  14. Kocakarin I, Yegin K. Glass superstrate nanoantennas for infrared energy harvesting applications. Int J Antennas Propag. 2013;2013:245960.

    Google Scholar 

  15. Sanchez A, Davis CF, Liu KC, Javan A. The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies. J Appl Phys. 1978;49(10):5270–7.

    Article  Google Scholar 

  16. Grover S, Moddel G. Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J Photovolt. 2011;1(1):78–83.

    Article  Google Scholar 

  17. Joshi S, Moddel G. Efficiency limits of rectenna solar cells: theory of broadband photon-assisted tunneling. Appl Phys Lett. 2013;102:083901.

    Article  Google Scholar 

  18. Fumeaux C, Alda J, Boreman GD. Lithographic antennas at visible frequencies. Opt Lett. 1999;24:1629–31.

    Article  Google Scholar 

  19. Alimardani N, Cowell EW, Wagner JF, Conley JF, Evans DR, Chin M, Kilpatrick SJ, Dubey M. Impact of electrode roughness on metal-insulator-metal tunnel diodes with atomic layer deposited Al2O3 tunnel barriers. J Vac Sci Technol A. 2012;30:01A113.

    Article  Google Scholar 

  20. Periasamy P, Berry JJ, Dameron AA, Bergeson JD, Ginley DS, O’Hayre OP, Parilla PA. Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv Mater. 2011;23:3080–5.

    Article  Google Scholar 

  21. Grover S, Moddel G. Engineering the current–voltage characterisitcs of metal/insulator/metal diodes using double insulator tunnel barriers. Solid State Electron. 2012;67(1):94–9.

    Article  Google Scholar 

  22. Maraghechi P, Foroughi-Abari A, Cadien K, Elezzabi AY. Enhanced rectifying response from metal-insulator-insulator-metal junctions. Appl Phys Lett. 2011;99:253503.

    Article  Google Scholar 

  23. Estes MJ, Moddel G. Surface plasmon devices. US Patent 7,010,183. 2006.

    Google Scholar 

  24. Hobbs PC, Laibowitz RB, Libsch FR, LaBianca NC, Chiniwalla PP. Efficient waveguide-integrated tunnel junction detectors at 1.6 μm. Opt Express. 2007;15(25):16376–89.

    Article  Google Scholar 

  25. Grover S, Dmitriyeva O, Estes MJ, Moddel G. Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans Nanotechnol. 2010;9(6):716–22.

    Article  Google Scholar 

  26. Miskovsky NM, Cutler PH, Mayer A, Weiss BL, Willis B, Sullivan TE, Lerner PB. Nanoscale devices for rectification of high frequency radiation from the infrared through the visible: a new approach. J Nanotechnol. 2012;2012:512379.

    Google Scholar 

  27. Wang F, Melosh NA. Plasmonic energy collection through hot carrier extraction. Nano Lett. 2011;11:5426–30.

    Article  Google Scholar 

  28. White TP, Catchpole KR. Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Appl Phys Lett. 2012;101:073905.

    Article  Google Scholar 

  29. Alavirad M, Mousavi SS, Roy L, Berini P. Schottky-contact plasmonic dipole rectenna concept for biosensing. Opt Express. 2013;21(4):4328–47.

    Article  Google Scholar 

  30. Zhu Z, Joshi S, Grover S, Moddel G. Graphene geometric diodes for terahertz rectennas. J Phys Appl Phys. 2013;46:185101.

    Google Scholar 

  31. Moddel G, Zhu Z, Grover S, Joshi S. Ultrahigh speed graphene diode with reversible polarity. Solid State Commun. 2012;152:1842–5.

    Article  Google Scholar 

  32. Balocco C, Kasjoo SR, Lu XF, Zhang LQ, Alimi Y, Winnerl S, Song AM. Room-temperature operation of a unipolar nanodiode at terahertz frequencies. Appl Phys Lett. 2011;98:223501.

    Article  Google Scholar 

  33. Corkish R, Green MA, Puzzer T. Solar energy collection by antennas. Solar Energy. 2002;73:395–401.

    Article  Google Scholar 

  34. Landsberg PT, Tonge G. Thermodynamics of the conversion of diluted radiation. J Phys A: Math Gen. 1979;12:551–62.

    Article  Google Scholar 

  35. Moddel G. Fractional bandwidth normalization for optical spectra with application to the solar blackbody spectrum. Appl Optics. 2001;40:413–6.

    Article  Google Scholar 

  36. Grover S. Diodes for optical rectennas. PhD Thesis. University of Colorado at Boulder. 2011.

    Google Scholar 

  37. Harder NP, Würfel P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond Sci Technol. 2003;18:S151–7.

    Article  Google Scholar 

  38. Yoo T, Chang K. Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans Microw Theory Tech. 1992;40(6):1259–66.

    Article  Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge the following collaborators and students for many insightful discussions about rectenna solar cells and for their helpful comments on this chapter: Pat Brady, Michael Cromar, Sachit Grover, Saumil Joshi, Brad Pelz, and Zixu Zhu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garret Moddel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moddel, G. (2013). Will Rectenna Solar Cells Be Practical?. In: Moddel, G., Grover, S. (eds) Rectenna Solar Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3716-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3716-1_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3715-4

  • Online ISBN: 978-1-4614-3716-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics