The Role of Tumor Exosomes in Tumorigenicity

  • Huang-Ge Zhang
  • Johan K. O. Skog


Tumor growth and metastasis is dependent on a complex interplay between the tumor cells and the tumor stroma as well as tumor-tumor interaction. This communication occurs through direct interaction, secreted factors as well as microvesicles carrying proteins and nucleic acids. The tumor microvesicles carry a wide range of cargo, including oncogenic proteins, fragmented DNA, mRNA and non-coding RNA with regulatory functions that can be horizontallytransferred between different cells. In addition, these microvesicles are enriched in retrotransposable elements that have been implicated with genetic instability and transcriptional dysregulation.


Transposable Element Horizontal Gene Transfer Recipient Cell Phorbol Myristate Acetate Extracellular Matrix Metalloproteinase Inducer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahn K, Kim HS (2009) Structural and quantitative expression analyses of HERV gene family in human tissues. Mol Cells 28(2):99–103PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Nedawi K, Meehan B et al (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA 106(10):3794–3799CrossRefGoogle Scholar
  3. 3.
    Al-Nedawi K, Meehan B et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624PubMedCrossRefGoogle Scholar
  4. 4.
    Amzallag N, Passer BJ et al (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279(44):46104–46112PubMedCrossRefGoogle Scholar
  5. 5.
    Antonyak MA, Li B et al (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci U S A 108(12):4852–4857PubMedCrossRefGoogle Scholar
  6. 6.
    Baj-Krzyworzeka M, Szatanek R et al (2006) Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother 55(7):808–818PubMedCrossRefGoogle Scholar
  7. 7.
    Balaj L, Lessard R et al (2010) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180CrossRefGoogle Scholar
  8. 8.
    Belancio VP, Roy-Engel AM et al (2010) All y’all need to know ’bout retroelements in cancer. Semin Cancer Biol 20(4):200–210PubMedCrossRefGoogle Scholar
  9. 9.
    Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410PubMedCrossRefGoogle Scholar
  10. 10.
    Bergsmedh A, Szeles A et al (2001) Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci U S A 98(11):6407–6411PubMedCrossRefGoogle Scholar
  11. 11.
    Bieda K, Hoffmann A et al (2001) Phenotypic heterogeneity of human endogenous retrovirus particles produced by teratocarcinoma cell lines. J Gen Virol 82(Pt 3):591–596PubMedGoogle Scholar
  12. 12.
    Blond JL, Beseme F et al (1999) Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 73(2):1175–1185PubMedGoogle Scholar
  13. 13.
    Coffin JM (1992) Structure and classification of retroviruses. Plenum, New YorkGoogle Scholar
  14. 14.
    Contreras-Galindo R, Kaplan MH et al (2008). Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol 82(19):9329–9336CrossRefGoogle Scholar
  15. 15.
    Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10):691–703PubMedCrossRefGoogle Scholar
  16. 16.
    Coufal NG, Garcia-Perez JL et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460(7259):1127–1131PubMedCrossRefGoogle Scholar
  17. 17.
    Daskalos A, Nikolaidis G et al (2009) Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 124(1):81–87PubMedCrossRefGoogle Scholar
  18. 18.
    Doerfler W, Hohlweg U et al (2001) Foreign DNA integration–perturbations of the genome–oncogenesis. Ann N Y Acad Sci 945:276–288PubMedCrossRefGoogle Scholar
  19. 19.
    Fang Y, Wu N et al (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5(6):e158PubMedCrossRefGoogle Scholar
  20. 20.
    Gan X, Gould SJ (2011) Identification of an inhibitory budding signal that blocks the release of HIV particles and exosome/microvesicle proteins. Mol Biol Cell 22(6):817–830PubMedCrossRefGoogle Scholar
  21. 21.
    Ginestra A, La Placa MD et al (1998) The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res 18(5A):3433–3437PubMedGoogle Scholar
  22. 22.
    Goodier JL, Kazazian HH Jr (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135(1):23–35PubMedCrossRefGoogle Scholar
  23. 23.
    Gould SJ, Booth AM et al (2003) The Trojan exosome hypothesis. Proc Natl Acad Sci U S A 100(19):10592–10597PubMedCrossRefGoogle Scholar
  24. 24.
    Grange C, Tapparo M et al (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71(15):5346–5356PubMedCrossRefGoogle Scholar
  25. 25.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  26. 26.
    Kannian P, Green PL (2010) Human T lymphotropic virus type 1 (HTLV-1): molecular biology and oncogenesis. Viruses 2(9):2037–2077PubMedCrossRefGoogle Scholar
  27. 27.
    Kidwell MG (1992) Horizontal transfer. Curr Opin Genet Dev 2(6):868–873PubMedCrossRefGoogle Scholar
  28. 28.
    Klattenhoff C, Theurkauf W (2008) Biogenesis and germline functions of piRNAs. Development 135(1):3–9PubMedCrossRefGoogle Scholar
  29. 29.
    Krishnamoorthy L, Bess JW Jr et al (2009) HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nat Chem Biol 5(4):244–250PubMedCrossRefGoogle Scholar
  30. 30.
    Lander ES, Linton LM et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedCrossRefGoogle Scholar
  31. 31.
    Li M, Yu D et al (2010) Tobacco smoke induces the generation of procoagulant microvesicles from human monocytes/macrophages. Arterioscler Thromb Vasc Biol 30(9):1818–1824PubMedCrossRefGoogle Scholar
  32. 32.
    Lin C, Yang L et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6):1069–1083PubMedCrossRefGoogle Scholar
  33. 33.
    Lohe AR, Moriyama EN et al (1995) Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol 12(1):62–72PubMedCrossRefGoogle Scholar
  34. 34.
    Millimaggi D, Mari M et al (2007) Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia 9(4):349–357PubMedCrossRefGoogle Scholar
  35. 35.
    Muralidharan-Chari V, Clancy J et al (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19(22):1875–1885PubMedCrossRefGoogle Scholar
  36. 36.
    Onafuwa-Nuga AA, King SR et al (2005) Nonrandom packaging of host RNAs in moloney murine leukemia virus. J Virol 79(21):13528–13537PubMedCrossRefGoogle Scholar
  37. 37.
    Ostrowski M, Carmo NB et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30 sup pp 1–13PubMedCrossRefGoogle Scholar
  38. 38.
    Pace JK 2nd, Feschotte C (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17(4):422–432PubMedCrossRefGoogle Scholar
  39. 39.
    Pereira V, Enard D et al (2009) The effect of transposable element insertions on gene expression evolution in rodents. PLoS One 4(2):e4321PubMedCrossRefGoogle Scholar
  40. 40.
    Polavarapu N, Arora G et al (2011) Characterization and potential functional significance of human-chimpanzee large INDEL variation. Mob DNA 2:13PubMedCrossRefGoogle Scholar
  41. 41.
    Serafino A, Balestrieri E et al (2009) The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation. Exp Cell Res 315(5):849–862PubMedCrossRefGoogle Scholar
  42. 42.
    Sidhu SS, Mengistab AT et al (2004) The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene 23(4):956–963PubMedCrossRefGoogle Scholar
  43. 43.
    Skog J, Wurdinger T et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476PubMedCrossRefGoogle Scholar
  44. 44.
    Taraboletti G, D’Ascenzo S et al (2006) Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia 8(2):96–103PubMedCrossRefGoogle Scholar
  45. 45.
    Taylor DD, Black PH (1986) Shedding of plasma membrane fragments. Neoplastic and developmental importance. Dev Biol (N Y 1985) 3:33–57Google Scholar
  46. 46.
    Taylor PM, Woodfield RJ et al (2002) Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene 21(37):5765–5772PubMedCrossRefGoogle Scholar
  47. 47.
    Trujillo JI (2011) MEK inhibitors: a patent review 2008–2010. Expert Opin Ther Pat 21(7):1045–1069CrossRefGoogle Scholar
  48. 48.
    Valadi H, Ekstrom K et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMedCrossRefGoogle Scholar
  49. 49.
    van der Vos KE, Balaj L, Skog J, Breakefield XO. Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell Mol Neurobiol. 2011 Aug;31(6):949–59.Google Scholar
  50. 50.
    Vogel G (2011) Retrotransposons. Do jumping genes spawn diversity? Science 332(6027):300–301Google Scholar
  51. 51.
    Waterhouse M, Themeli M et al (2011) Horizontal DNA transfer from donor to host cells as an alternative mechanism of epithelial chimerism after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 17(3):319–329PubMedCrossRefGoogle Scholar
  52. 52.
    Wennerberg K, Rossman KL et al (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt 5):843–846PubMedCrossRefGoogle Scholar
  53. 53.
    Whitfield JR, Soucek L (2011) Tumor microenvironment: becoming sick of Myc. Cell Mol Life Sci 69(6):931–934PubMedCrossRefGoogle Scholar
  54. 54.
    Wieckowski E, Whiteside TL (2006) Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunol Res 36(1–3):247–254PubMedCrossRefGoogle Scholar
  55. 55.
    Wissing S, Munoz-Lopez M et al (2011) Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility. Hum Mol Genet 21:208–218PubMedCrossRefGoogle Scholar
  56. 56.
    Yu JL, May L et al (2005) Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105(4):1734–1741PubMedCrossRefGoogle Scholar
  57. 57.
    Yu X, Harris SL et al (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66(9):4795–4801PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang L, Hou D et al (2011) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Huang-Ge Zhang
    • 1
  • Johan K. O. Skog
    • 2
  1. 1.James Brown Cancer CenterUniversity of LouisvilleLouisvilleUSA
  2. 2.Exosome Diagnostics Inc.The Lasker Biomedical Research BuildingNew YorkUSA

Personalised recommendations