Skip to main content

Dietary Paradoxes to Optimize Cardiovascular Risk Management in Chronic Kidney Disease

  • Chapter
  • First Online:
The Kidney in Heart Failure

Abstract

While the medical community is faced with a burgeoning epidemic of chronic kidney disease (CKD), the stark reality is that the majority of patients with early stages of CKD never reach end-stage renal disease (ESRD). Patients with CKD are far more likely to die of cardiovascular-related complications, leading to the generalized acceptance of CKD as a major independent risk factor for CVD. Yet despite being among the highest risk group for developing CVD, dietary guidelines for reducing CV risk are scant and evidence-based recommendations are lacking. Heart healthy guidelines for the general population often contradict dietary recommendations for the CKD setting and have potential to increase risk of certain metabolic complications. In this chapter, specific controversies of the “heart healthy” diet and how they may be reconciled in the patient with underlying renal disease are discussed. An integrated dietary approach to reduce CVD risk specifically in the CKD population is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xue JL, Ma JZ, Louis TA, Collins AJ. Forecast of the number of patients with end-stage renal disease in the United States to the year 2010. J Am Soc Nephrol. 2001;12(12):2753–8.

    PubMed  CAS  Google Scholar 

  2. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003;41(1):1–12.

    PubMed  Google Scholar 

  3. Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004;164(6):659–63.

    PubMed  Google Scholar 

  4. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32(5 Suppl 3):S112–9.

    PubMed  CAS  Google Scholar 

  5. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.

    PubMed  CAS  Google Scholar 

  6. Ix JH, Shlipak MG, Liu HH, Schiller NB, Whooley MA. Association between renal insufficiency and inducible ischemia in patients with coronary artery disease: the heart and soul study. J Am Soc Nephrol. 2003;14(12):3233–8.

    PubMed  Google Scholar 

  7. Shlipak MG, Katz R, Sarnak MJ, Fried LF, Newman AB, Stehman-Breen C, et al. Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease. Ann Intern Med. 2006;145(4):237–46.

    PubMed  CAS  Google Scholar 

  8. Foley RN, Parfrey PS, Sarnak MJ. Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol. 1998;9(12 Suppl):S16–23.

    PubMed  CAS  Google Scholar 

  9. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension. 2003;42(5):1050–65.

    PubMed  CAS  Google Scholar 

  10. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.

    Google Scholar 

  11. Hage FG, Venkataraman R, Zoghbi GJ, Perry GJ, DeMattos AM, Iskandrian AE. The scope of coronary heart disease in patients with chronic kidney disease. J Am Coll Cardiol. 2009;53(23):2129–40.

    PubMed  Google Scholar 

  12. Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, et al. Chronic kidney disease as a global public health problem: approaches and initiatives—a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72(3):247–59.

    PubMed  CAS  Google Scholar 

  13. Lloyd-Jones DM, Larson MG, Beiser A, Levy D. Lifetime risk of developing coronary heart disease. Lancet. 1999;353(9147):89–92.

    PubMed  CAS  Google Scholar 

  14. Walker C, Reamy BV. Diets for cardiovascular disease prevention: what is the evidence? Am Fam Physician. 2009;79(7):571–8.

    PubMed  Google Scholar 

  15. Menotti A, Blackburn H, Kromhout D, Nissinen A, Adachi H, Lanti M. Cardiovascular risk factors as determinants of 25-year all-cause mortality in the seven countries study. Eur J Epidemiol. 2001;17(4):337–46.

    PubMed  CAS  Google Scholar 

  16. Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, Ruiz-Gutiérrez V, Covas MI, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006;145(1):1–11.

    PubMed  Google Scholar 

  17. de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99(6):779–85.

    PubMed  Google Scholar 

  18. Mitrou PN, Kipnis V, Thiébaut AC, Reedy J, Subar AF, Wirfält E, et al. Mediterranean dietary pattern and prediction of all-cause mortality in a US population: results from the NIH-AARP Diet and Health Study. Arch Intern Med. 2007;167(22):2461–8.

    PubMed  Google Scholar 

  19. American Heart Association Nutrition Committee, Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, et al. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114(1):82–96.

    Google Scholar 

  20. Institute of Medicine of the National Academies website. New Reference. http://www.iom.eduupdated. Accessed 15 Oct 2009.

  21. Joint WHO/FAO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser. 2007;(935):1–265, back cover.

    Google Scholar 

  22. Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360(9):859–73.

    PubMed  CAS  Google Scholar 

  23. Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982;307(11):652–9.

    PubMed  CAS  Google Scholar 

  24. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol. 1981;241(1):F85–93.

    PubMed  CAS  Google Scholar 

  25. Hirschberg R, Kopple JD, Blantz RC, Tucker BJ. Effects of recombinant human insulin-like growth factor I on glomerular dynamics in the rat. J Clin Invest. 1991;87(4):1200–6.

    PubMed  CAS  Google Scholar 

  26. King AJ, Levey AS. Dietary protein and renal function. J Am Soc Nephrol. 1993;3(11): 1723–37.

    PubMed  CAS  Google Scholar 

  27. Kontessis P, Jones S, Dodds R, Trevisan R, Nosadini R, Fioretto P, et al. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 1990;38(1): 136–44.

    PubMed  CAS  Google Scholar 

  28. Nakamura H, Ito S, Ebe N, Shibata A. Renal effects of different types of protein in healthy volunteer subjects and diabetic patients. Diabetes Care. 1993;16(8):1071–5.

    PubMed  CAS  Google Scholar 

  29. Tuttle KR, Anderberg RJ, Cooney SK, Meek RL. Oxidative stress mediates protein kinase C activation and advanced glycation end product formation in a mesangial cell model of diabetes and high protein diet. Am J Nephrol. 2009;29(3):171–80.

    PubMed  CAS  Google Scholar 

  30. Uribarri J, Tuttle KR. Advanced glycation end products and nephrotoxicity of high-protein diets. Clin J Am Soc Nephrol. 2006;1(6):1293–9.

    PubMed  CAS  Google Scholar 

  31. Knight EL, Stampfer MJ, Hankinson SE, Spiegelman D, Curhan GC. The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann Intern Med. 2003;138(6):460–7.

    PubMed  Google Scholar 

  32. Zeller K, Whittaker E, Sullivan L, Raskin P, Jacobson HR. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med. 1991;324(2):78–84.

    PubMed  CAS  Google Scholar 

  33. Walker JD, Bending JJ, Dodds RA, Mattock MB, Murrells TJ, Keen H, Viberti GC. Restriction of dietary protein and progression of renal failure in diabetic nephropathy. Lancet. 1989;2(8677):1411–5.

    PubMed  CAS  Google Scholar 

  34. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, Striker G. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994;330(13): 877–84.

    PubMed  CAS  Google Scholar 

  35. Levey AS, Greene T, Sarnak MJ, Wang X, Beck GJ, Kusek JW, et al. Effect of dietary protein restriction on the progression of kidney disease: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am J Kidney Dis. 2006;48(6):879–88.

    PubMed  CAS  Google Scholar 

  36. Wolf G, Chen S, Ziyadeh FN. From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes. 2005;54(6): 1626–34.

    PubMed  CAS  Google Scholar 

  37. Anderson S, Vora JP. Current concepts of renal hemodynamics in diabetes. J Diabetes Complications. 1995;9(4):304–7.

    PubMed  CAS  Google Scholar 

  38. Tuttle KR, Bruton JL, Perusek MC, Lancaster JL, Kopp DT, DeFronzo RA. Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus. N Engl J Med. 1991;324(23):1626–32.

    PubMed  CAS  Google Scholar 

  39. Johnson DW. Dietary protein restriction as a treatment for slowing chronic kidney disease progression: the case against. Nephrology (Carlton). 2006;11(1):58–62.

    CAS  Google Scholar 

  40. Mandayam S, Mitch WE. Dietary protein restriction benefits patients with chronic kidney disease. Nephrology (Carlton). 2006;11(1):53–7.

    CAS  Google Scholar 

  41. Fouque D, Laville M. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst Rev. 2009;(3):CD001892.

    Google Scholar 

  42. Menon V, Kopple JD, Wang X, Beck GJ, Collins AJ, Kusek JW, et al. Effect of a very low-protein diet on outcomes: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am J Kidney Dis. 2009;53(2):208–17.

    PubMed  CAS  Google Scholar 

  43. Friedman AN. High-protein diets: potential effects on the kidney in renal health and disease. Am J Kidney Dis. 2004;44(6):950–62.

    PubMed  Google Scholar 

  44. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    PubMed  Google Scholar 

  45. Vanharanta M, Voutilainen S, Lakka TA, van der Lee M, Adlercreutz H, Salonen JT. Risk of acute coronary events according to serum concentrations of enterolactone: a prospective population-based case-control study. Lancet. 1999;354(9196):2112–5.

    PubMed  CAS  Google Scholar 

  46. Vanharanta M, Voutilainen S, Rissanen TH, Adlercreutz H, Salonen JT. Risk of cardiovascular disease-related and all-cause death according to serum concentrations of enterolactone: Kuopio Ischaemic Heart Disease Risk Factor Study. Arch Intern Med. 2003;163(9):1099–104.

    PubMed  CAS  Google Scholar 

  47. Wolk A, Manson JE, Stampfer MJ, Colditz GA, Hu FB, Speizer FE, et al. Long-term intake of dietary fiber and decreased risk of coronary heart disease among women. JAMA. 1999;281(21): 1998–2004.

    PubMed  CAS  Google Scholar 

  48. Rimm EB, Ascherio A, Giovannucci E, Spiegelman D, Stampfer MJ, Willett WC. Vegetable, fruit, and cereal fiber intake and risk of coronary heart disease among men. JAMA. 1996;275(6):447–51.

    PubMed  CAS  Google Scholar 

  49. Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep. 2009;26(8):1001–43.

    PubMed  CAS  Google Scholar 

  50. Jew S, AbuMweis SS, Jones PJ. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. J Med Food. 2009;12(5): 925–34.

    PubMed  CAS  Google Scholar 

  51. Donini LM, Savina C, Cannella C. Nutrition in the elderly: role of fiber. Arch Gerontol Geriatr. 2009;49 Suppl 1:61–9.

    PubMed  CAS  Google Scholar 

  52. Bourgoignie JJ, Gavellas G, Van Putten V, Berl T. Potassium-aldosterone response in dogs with chronic renal insufficiency. Miner Electrolyte Metab. 1985;11(3):150–4.

    PubMed  CAS  Google Scholar 

  53. Perez GO, Pelleya R, Oster JR, Kem DC, Vaamonde CA. Blunted kaliuresis after an acute potassium load in patients with chronic renal failure. Kidney Int. 1983;24(5):656–62.

    PubMed  CAS  Google Scholar 

  54. Gennari FJ, Segal AS. Hyperkalemia: an adaptive response in chronic renal insufficiency. Kidney Int. 2002;62(1):1–9.

    PubMed  CAS  Google Scholar 

  55. Ryan MJ, Tuttle KR. Elevations in serum creatinine with RAAS blockade: why isn’t it a sign of kidney injury? Curr Opin Nephrol Hypertens. 2008;17(5):443–9.

    PubMed  CAS  Google Scholar 

  56. Berl T. Review: renal protection by inhibition of the renin-angiotensin-aldosterone system. J Renin Angiotensin Aldosterone Syst. 2009;10(1):1–8.

    PubMed  CAS  Google Scholar 

  57. Ruilope LM. Angiotensin receptor blockers: RAAS blockade and renoprotection. Curr Med Res Opin. 2008;24(5):1285–93.

    PubMed  CAS  Google Scholar 

  58. Rüster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol. 2006;17(11):2985–91.

    PubMed  Google Scholar 

  59. Parving HH, Andersen S, Jacobsen P, Christensen PK, Rossing K, Hovind P, et al. Angiotensin receptor blockers in diabetic nephropathy: renal and cardiovascular end points. Semin Nephrol. 2004;24(2):147–57.

    PubMed  CAS  Google Scholar 

  60. Einhorn LM, Zhan M, Hsu VD, Walker LD, Moen MF, Seliger SL, et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med. 2009;169(12):1156–62.

    PubMed  Google Scholar 

  61. Pichler RH, de Boer IH. Dual renin-angiotensin-aldosterone system blockade for diabetic kidney disease. Curr Diab Rep. 2010;10(4):297–305.

    PubMed  CAS  Google Scholar 

  62. Slagman MC, Navis G, Laverman GD. Dual blockade of the renin-angiotensin-aldosterone system in cardiac and renal disease. Curr Opin Nephrol Hypertens. 2010;19(2):140–52.

    PubMed  CAS  Google Scholar 

  63. Weir MR, Rolfe M. Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors. Clin J Am Soc Nephrol. 2010;5(3):531–48.

    PubMed  CAS  Google Scholar 

  64. Schrier RW. Hyperkalemia: a threat to RAAS inhibition? Nat Rev Nephrol. 2010;6(5):245–6.

    PubMed  Google Scholar 

  65. Sterns RH, Rojas M, Bernstein P, Chennupati S. Ion-exchange resins for the treatment of hyperkalemia: are they safe and effective? J Am Soc Nephrol. 2010;21(5):733–5.

    PubMed  CAS  Google Scholar 

  66. Miller BW. Chronic kidney disease in solid-organ transplantation. Adv Chronic Kidney Dis. 2006;13(1):29–34.

    PubMed  Google Scholar 

  67. Bloom RD, Reese PP. Chronic kidney disease after nonrenal solid-organ transplantation. J Am Soc Nephrol. 2007;18(12):3031–41.

    PubMed  CAS  Google Scholar 

  68. Ojo AO, Held PJ, Port FK, Wolfe RA, Leichtman AB, Young EW, et al. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med. 2003;349(10):931–40.

    PubMed  CAS  Google Scholar 

  69. Preston RA, Hirsh MD MJ, Oster MD, Oster MD HR. University of Miami Division of Clinical Pharmacology therapeutic rounds: drug-induced hyperkalemia. Am J Ther. 1998;5(2):125–32.

    PubMed  CAS  Google Scholar 

  70. Kubokawa M, Kojo T, Komagiri Y, Nakamura K. Role of calcineurin-mediated dephosphorylation in modulation of an inwardly rectifying K+ channel in human proximal tubule cells. J Membr Biol. 2009;231(2–3):79–92.

    PubMed  CAS  Google Scholar 

  71. Kamel KS, Ethier JH, Quaggin S, Levin A, Albert S, Carlisle EJ, Halperin ML. Studies to determine the basis for hyperkalemia in recipients of a renal transplant who are treated with cyclosporine. J Am Soc Nephrol. 1992;2(8):1279–84.

    PubMed  CAS  Google Scholar 

  72. Schmidt A, Gruber U, Böhmig G, Köller E, Mayer G. The effect of ACE inhibitor and angiotensin II receptor antagonist therapy on serum uric acid levels and potassium homeostasis in hypertensive renal transplant recipients treated with CsA. Nephrol Dial Transplant. 2001;16(5): 1034–7.

    PubMed  CAS  Google Scholar 

  73. Bakris GL, Williams M, Dworkin L, Elliott WJ, Epstein M, Toto R, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000;36(3):646–61.

    PubMed  CAS  Google Scholar 

  74. Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, Rosner BA, et al. Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med. 1997;337(21):1491–9.

    PubMed  CAS  Google Scholar 

  75. Thomas GN, Cheung BM, Ho SY, Macfarlane DJ, Deng HB, McGhee SM, et al. Overview of dietary influences on atherosclerotic vascular disease: epidemiology and prevention. Cardiovasc Hematol Disord Drug Targets. 2007;7(2):87–97.

    PubMed  CAS  Google Scholar 

  76. Robertson TL, Kato H, Rhoads GG, Kagan A, Marmot M, Syme SL, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan Hawaii and California. Incidence of myocardial infarction and death from coronary heart disease. Am J Cardiol. 1977;39(2):239–43.

    PubMed  CAS  Google Scholar 

  77. Kagan A, Harris BR, Winkelstein Jr W, et al. Epidemiologic Studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii, and California: demographic, physical, dietary and biochemical characteristics. J Chronic Dis. 1974;27:345–64.

    PubMed  CAS  Google Scholar 

  78. O’Keefe JH, Carter MD, Lavie CJ. Primary and secondary prevention of cardiovascular diseases: a practical evidence-based approach. Mayo Clin Proc. 2009;84(8):741–57.

    PubMed  Google Scholar 

  79. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22.

    Google Scholar 

  80. Hooper L, Summerbell CD, Higgins JP, Thompson RL, Clements G, Capps N, et al. Reduced or modified dietary fat for preventing cardiovascular disease. Cochrane Database Syst Rev. 2001;(3):CD002137.

    Google Scholar 

  81. Singh RB, Rastogi SS, Verma R, Laxmi B, Singh R, Ghosh S, Niaz MA. Randomised controlled trial of cardioprotective diet in patients with recent acute myocardial infarction: results of one year follow up. BMJ. 1992;304(6833):1015–9.

    PubMed  CAS  Google Scholar 

  82. Shurraw S, Tonelli M. Statins for treatment of dyslipidemia in chronic kidney disease. Perit Dial Int. 2006;26(5):523–39.

    PubMed  CAS  Google Scholar 

  83. Wanner C, Ritz E. Reducing lipids for CV protection in CKD patients-current evidence. Kidney Int Suppl. 2008;(111):S24–8.

    Google Scholar 

  84. Lacquaniti A, Bolignano D, Donato V, Bono C, Fazio MR, Buemi M. Alterations of lipid metabolism in chronic nephropathies: mechanisms, diagnosis and treatment. Kidney Blood Press Res. 2010;33(2):100–10.

    PubMed  CAS  Google Scholar 

  85. Danesh J, Collins R, Peto R. Lipoprotein(a) and coronary heart disease. Meta-analysis of prospective studies. Circulation. 2000;102(10):1082–5.

    PubMed  CAS  Google Scholar 

  86. Cheung AK. Is lipid control necessary in hemodialysis patients? Clin J Am Soc Nephrol. 2009;4 Suppl 1:S95–101.

    PubMed  CAS  Google Scholar 

  87. Nanayakkara PW, Gaillard CA. Vascular disease and chronic renal failure: new insights. Neth J Med. 2010;68(1):5–14.

    PubMed  CAS  Google Scholar 

  88. Vaziri ND. Causes of dysregulation of lipid metabolism in chronic renal failure. Semin Dial. 2009;22(6):644–51.

    PubMed  Google Scholar 

  89. Silverstein DM. Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease. Pediatr Nephrol. 2009;24(8):1445–52.

    PubMed  Google Scholar 

  90. Glorieux G, Cohen G, Jankowski J, Vanholder R. Platelet/Leukocyte activation, inflammation, and uremia. Semin Dial. 2009;22(4):423–7.

    PubMed  Google Scholar 

  91. Stenvinkel P, Ketteler M, Johnson RJ, Lindholm B, Pecoits-Filho R, Riella M, et al. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia–the good, the bad, and the ugly. Kidney Int. 2005;67(4):1216–33.

    PubMed  CAS  Google Scholar 

  92. Arici M, Walls J. End-stage renal disease, atherosclerosis, and cardiovascular mortality: is C-reactive protein the missing link? Kidney Int. 2001;59(2):407–14.

    PubMed  CAS  Google Scholar 

  93. Ueda S, Yamagishi SI, Okuda S. New pathways to renal damage: role of ADMA in retarding renal disease progression. J Nephrol. 2010;23(4):377–86.

    PubMed  Google Scholar 

  94. Mason NA, Bailie GR, Satayathum S, Bragg-Gresham JL, Akiba T, Akizawa T, et al. HMG-coenzyme a reductase inhibitor use is associated with mortality reduction in hemodialysis patients. Am J Kidney Dis. 2005;45(1):119–26.

    PubMed  CAS  Google Scholar 

  95. Seliger SL, Weiss NS, Gillen DL, Kestenbaum B, Ball A, Sherrard DJ, Stehman-Breen CO. HMG-CoA reductase inhibitors are associated with reduced mortality in ESRD patients. Kidney Int. 2002;61(1):297–304.

    PubMed  CAS  Google Scholar 

  96. Tonelli M, Isles C, Curhan GC, Tonkin A, Pfeffer MA, Shepherd J, et al. Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation. 2004;110(12):1557–63.

    PubMed  CAS  Google Scholar 

  97. Wanner C, Krane V, März W, Olschewski M, Mann JF, Ruf G, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353(3):238–48.

    PubMed  CAS  Google Scholar 

  98. Fellström BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med. 2009;360(14):1395–407.

    PubMed  Google Scholar 

  99. Ritz E, Wanner C. Lipid abnormalities and cardiovascular risk in renal disease. J Am Soc Nephrol. 2008;19(6):1065–70.

    PubMed  CAS  Google Scholar 

  100. Baigent C, Landry M. Study of Heart and Renal Protection (SHARP). Kidney Int Suppl. 2003;(84):S207–10.

    Google Scholar 

  101. Blum A, Shamburek R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis. 2009;203(2):325–30.

    PubMed  CAS  Google Scholar 

  102. Ludman A, Venugopal V, Yellon DM, Hausenloy DJ. Statins and cardioprotection–more than just lipid lowering? Pharmacol Ther. 2009;122(1):30–43.

    PubMed  CAS  Google Scholar 

  103. Palaniswamy C, Selvaraj DR, Selvaraj T, Sukhija R. Mechanisms underlying pleiotropic effects of statins. Am J Ther. 2010;17(1):75–8.

    PubMed  Google Scholar 

  104. Sadowitz B, Maier KG, Gahtan V. Basic science review: Statin therapy–Part I: the pleiotropic effects of statins in cardiovascular disease. Vasc Endovascular Surg. 2010;44(4):241–51.

    PubMed  Google Scholar 

  105. Hu FB, Willett WC. Optimal diets for prevention of coronary heart disease. JAMA. 2002;288(20):2569–78.

    PubMed  CAS  Google Scholar 

  106. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr. 2010;91(3):502–9.

    PubMed  CAS  Google Scholar 

  107. Marckmann P, Grønbaek M. Fish consumption and coronary heart disease mortality. A systematic review of prospective cohort studies. Eur J Clin Nutr. 1999;53(8):585–90.

    PubMed  CAS  Google Scholar 

  108. Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM, et al. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA. 2002;287(14):1815–21.

    PubMed  CAS  Google Scholar 

  109. Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, Ma J. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med. 2002;346(15):1113–8.

    PubMed  CAS  Google Scholar 

  110. Burr ML, Fehily AM, Gilbert JF, Rogers S, Holliday RM, Sweetnam PM, et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet. 1989;2(8666):757–61.

    PubMed  CAS  Google Scholar 

  111. Rastogi T, Reddy KS, Vaz M, Spiegelman D, Prabhakaran D, Willett WC, et al. Diet and risk of ischemic heart disease in India. Am J Clin Nutr. 2004;79(4):582–92.

    PubMed  CAS  Google Scholar 

  112. Calder PC, Yaqoob P. Omega-3 (n-3) fatty acids, cardiovascular disease and stability of atherosclerotic plaques. Cell Mol Biol (Noisy-le-Grand). 2010;56(1):28–37.

    CAS  Google Scholar 

  113. Lauretani F, Maggio M, Pizzarelli F, Michelassi S, Ruggiero C, Ceda GP, et al. Omega-3 and renal function in older adults. Curr Pharm Des. 2009;15(36):4149–56.

    PubMed  CAS  Google Scholar 

  114. Fassett RG, Gobe GC, Peake JM, Coombes JS. Omega-3 polyunsaturated fatty acids in the treatment of kidney disease. Am J Kidney Dis. 2010;56(4):728–42.

    PubMed  CAS  Google Scholar 

  115. Mori TA, Burke V, Puddey I, Irish A, Cowpland CA, Beilin L, et al. The effects of [omega]3 fatty acids and coenzyme Q10 on blood pressure and heart rate in chronic kidney disease: a randomized controlled trial. J Hypertens. 2009;27(9):1863–72.

    PubMed  CAS  Google Scholar 

  116. Bates CJ, Prentice A, Birch MC, Delves HT. Dependence of blood indices of selenium and mercury on estimated fish intake in a national survey of British adults. Public Health Nutr. 2007;10(5):508–17.

    PubMed  Google Scholar 

  117. Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol. 2005;99(4):p105–10.

    PubMed  CAS  Google Scholar 

  118. Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005;16(2):520–8.

    PubMed  CAS  Google Scholar 

  119. Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31(4):607–17.

    PubMed  CAS  Google Scholar 

  120. Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G, and Cholesterol And Recurrent Events Trial Investigators. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation. 2005;112(17):2627–33.

    Google Scholar 

  121. Connolly GM, Cunningham R, McNamee PT, Young IS, Maxwell AP. Elevated serum phosphate predicts mortality in renal transplant recipients. Transplantation. 2009;87(7):1040–4.

    PubMed  CAS  Google Scholar 

  122. Block GA, Spiegel DM, Ehrlich J, Mehta R, Lindbergh J, Dreisbach A, Raggi P. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int. 2005;68(4):1815–24.

    PubMed  CAS  Google Scholar 

  123. Sigrist MK, Taal MW, Bungay P, McIntyre CW. Progressive vascular calcification over 2 years is associated with arterial stiffening and increased mortality in patients with stages 4 and 5 chronic kidney disease. Clin J Am Soc Nephrol. 2007;2(6):1241–8.

    PubMed  CAS  Google Scholar 

  124. London GM, Guérin AP, Marchais SJ, Métivier F, Pannier B, Adda H. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant. 2003;18(9):1731–40.

    PubMed  Google Scholar 

  125. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342(20):1478–83.

    PubMed  CAS  Google Scholar 

  126. Tuttle KR, Short RA. Longitudinal relationships among coronary artery calcification, serum phosphorus, and kidney function. Clin J Am Soc Nephrol. 2009;4(12):1968–73.

    PubMed  CAS  Google Scholar 

  127. Mathew S, Tustison KS, Sugatani T, Chaudhary LR, Rifas L, Hruska KA. The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol. 2008;19(6):1092–105.

    PubMed  CAS  Google Scholar 

  128. Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000;87(7):E10–7.

    PubMed  CAS  Google Scholar 

  129. Bhuriya R, Li S, Chen SC, McCullough PA, Bakris GL. Plasma parathyroid hormone level and prevalent cardiovascular disease in CKD stages 3 and 4: an analysis from the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis. 2009;53(4 Suppl 4):S3–10.

    PubMed  CAS  Google Scholar 

  130. Hagström E, Hellman P, Larsson TE, Ingelsson E, Berglund L, Sundström J, et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation. 2009;119(21):2765–71.

    PubMed  Google Scholar 

  131. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 2005;16(7):2205–15.

    PubMed  CAS  Google Scholar 

  132. Gutiérrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119(19):2545–52.

    PubMed  Google Scholar 

  133. Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584–92.

    PubMed  Google Scholar 

  134. Sigrist MK, Chiarelli G, Lim L, Levin A. Early initiation of phosphate lowering dietary therapy in non-dialysis chronic kidney disease: a critical review. J Ren Care. 2009;35(Suppl):171–8.

    Google Scholar 

  135. Isakova T, Gutierrez O, Shah A, Castaldo L, Holmes J, Lee H, Wolf M. Postprandial mineral metabolism and secondary hyperparathyroidism in early CKD. J Am Soc Nephrol. 2008;19(3):615–23.

    PubMed  CAS  Google Scholar 

  136. Russo D, Miranda I, Ruocco C, Battaglia Y, Buonanno E, Manzi S, et al. The progression of coronary artery calcification in predialysis patients on calcium carbonate or sevelamer. Kidney Int. 2007;72(10):1255–61.

    PubMed  CAS  Google Scholar 

  137. Buckalew VM, Berg RL, Wang SR, Porush JG, Rauch S, Schulman G. Prevalence of hypertension in 1,795 subjects with chronic renal disease: the modification of diet in renal disease study baseline cohort. Modification of Diet in Renal Disease Study Group. Am J Kidney Dis. 1996;28(6):811–21.

    PubMed  Google Scholar 

  138. Blood Pressure Lowering Treatment Trialists’ Collaboration, Turnbull F, Neal B, Ninomiya T, Algert C, Arima H, et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials. BMJ. 2008;336(7653):1121–3.

    Google Scholar 

  139. Stamler J, Rose G, Stamler R, Elliott P, Dyer A, Marmot M. INTERSALT study findings. Public health and medical care implications. Hypertension. 1989;14(5):570–7.

    PubMed  CAS  Google Scholar 

  140. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24.

    PubMed  CAS  Google Scholar 

  141. Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, Klag MJ. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA. 1997;277(20):1624–32.

    PubMed  CAS  Google Scholar 

  142. Jacobs DR, Gross MD, Steffen L, Steffes MW, Yu X, Svetkey LP, et al. The effects of dietary patterns on urinary albumin excretion: results of the Dietary Approaches to Stop Hypertension (DASH) Trial. Am J Kidney Dis. 2009;53(4):638–46.

    PubMed  CAS  Google Scholar 

  143. Thoms E. The DASH diet–is it a realistic option for people with kidney disease? CANNT J. 2005;15(2):58–9.

    PubMed  Google Scholar 

  144. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1): 3–10.

    PubMed  CAS  Google Scholar 

  145. Neaton JD, Grimm RH, Prineas RJ, Stamler J, Grandits GA, Elmer PJ, et al. Treatment of Mild Hypertension Study. Final results. Treatment of Mild Hypertension Study Research Group. JAMA. 1993;270(6):713–24.

    PubMed  CAS  Google Scholar 

  146. Stamler R, Stamler J, Grimm R, Gosch FC, Elmer P, Dyer A, et al. Nutritional therapy for high blood pressure. Final report of a four-year randomized controlled trial–the Hypertension Control Program. JAMA. 1987;257(11):1484–91.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghu V. Durvasula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Durvasula, R.V., Tuttle, K.R. (2012). Dietary Paradoxes to Optimize Cardiovascular Risk Management in Chronic Kidney Disease. In: Bakris, G. (eds) The Kidney in Heart Failure. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3694-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3694-2_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3693-5

  • Online ISBN: 978-1-4614-3694-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics