Edema Mechanisms in the Heart Failure Patient and Treatment Options

  • Domenic A. Sica


The pathophysiology of sodium and water retention in heart failure is complex and marked by a unique interplay of hemodynamic and neurohumoral factors that evolve in tandem with progression of the underlying heart failure state. The sense of arterial underfilling signals the heart and prompts heart failure-related sodium and water retention. The level of neurohormonal activation, the scale of renal vasoconstriction, and the degree to which renal perfusion pressure is reduced arbitrate this process. When water retention exceeds that of sodium the end result is dilutional hyponatremia, which can present a particularly tricky treatment circumstance. The edema state can also moderate assorted aspects of the natriuretic response to diuretic therapy. The blunted response to diuretics in heart failure can also have disease-specific elements; however, diuretic response is more commonly influenced by the rate and extent of diuretic absorption, the time course of tubular delivery for a diuretic and loop diuretic-related hypertrophic structural changes localized to the distal tubule.


Heart Failure Glomerular Filtration Rate Heart Failure Patient Loop Diuretic Diuretic Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341: 577–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Damman K, Navis G, Voors AA, et al. Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail. 2007;13:599–608.PubMedCrossRefGoogle Scholar
  3. 3.
    Rea ME, Dunlap ME. Renal hemodynamics in heart failure: implications for treatment. Curr Opin Nephrol Hypertens. 2008;17:87–92.PubMedCrossRefGoogle Scholar
  4. 4.
    Voors AA, Davison BA, Felker GM, et al. Early drop in systolic blood pressure and worsening renal function in acute heart failure: renal results of Pre-RELAX-AHF. Eur J Heart Fail. 2011;13:961–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Flapan AD, Davies E, Waugh C, et al. Acute administration of captopril lowers the natriuretic and diuretic response to a loop diuretic in patients with chronic cardiac failure. Eur Heart J. 1991;12:924–7.PubMedGoogle Scholar
  6. 6.
    Cat AN, Touyz RM. A new look at the renin-angiotensin system-focusing on the vascular system. Peptides. 2011;32:2141–50.CrossRefGoogle Scholar
  7. 7.
    Geerling JC, Loewy AD. Central regulation of sodium appetite. Exp Physiol. 2008;93:177–209.PubMedCrossRefGoogle Scholar
  8. 8.
    Good JM, Brady AJ, Noormohamed FH, et al. Effect of intense angiotensin II suppression on the diuretic response to furosemide during chronic ACE inhibition. Circulation. 1994;90:220–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Schoolwerth A, Sica DA, Ballermann BJ, Wilcox CS. Renal considerations in angiotensin converting enzyme inhibitor therapy. Circulation. 2001;104:1985–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaye D, Esler M. Sympathetic neuronal regulation of the heart in aging and heart failure. Cardiovasc Res. 2005;66:256–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Watson AM, Hood SG, May CN. Mechanisms of sympathetic activation in heart failure. Clin Exp Pharmacol Physiol. 2006;33:1269–74.PubMedCrossRefGoogle Scholar
  12. 12.
    DiBona GF. Peripheral and central interactions between the renin-angiotensin system and the renal sympathetic nerves in control of renal function. Ann N Y Acad Sci. 2001;940:395–406.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen HH, Schrier RW. Pathophysiology of volume overload in acute heart failure syndromes. Am J Med. 2006;119(12 Suppl 1):S11–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Heitmann M, Davidsen U, Stokholm KH, et al. Renal and cardiac function during alpha1-beta-blockade in congestive heart failure. Scand J Clin Lab Invest. 2002;62:97–104.PubMedCrossRefGoogle Scholar
  15. 15.
    Dupont AG. Effects of carvedilol on renal function. Eur J Clin Pharmacol. 1990;38 Suppl 2: S96–100.PubMedCrossRefGoogle Scholar
  16. 16.
    Ito H, Nagatomo Y, Kohno T, et al. Differential effects of carvedilol and metoprolol on renal function in patients with heart failure. Circ J. 2010;74:1578–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.PubMedCrossRefGoogle Scholar
  18. 18.
    Agostoni P, Marenzi G, Lauri G, et al. Sustained improvement in functional capacity after removal of body fluid with isolated ultrafiltration in chronic cardiac insufficiency: failure of furosemide to provide the same result. Am J Med. 1994;96:191–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Sica DA. Sodium and water retention in heart failure and diuretic therapy: basic mechanisms. Cleveland Clin J Med. 2006;73 Suppl 2:82–7.Google Scholar
  20. 20.
    van Kraaij DJ, Jansen RW, Sweep FC, et al. Neurohormonal effects of furosemide withdrawal in elderly heart failure patients with normal systolic function. Eur J Heart Fail. 2003;5:47–53.PubMedCrossRefGoogle Scholar
  21. 21.
    Yilmaz MB, Gayat E, Salem R, et al. Impact of diuretic dosing on mortality in acute heart failure using a propensity-matched analysis. Eur J Heart Fail. 2011;13:1244–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Peacock WF, Costanzo MR, De Marco T, et al. ADHERE Scientific Advisory Committee and Investigators. Impact of intravenous loop diuretics on outcomes of patients hospitalized with acute decompensated heart failure: insights from the ADHERE registry. Cardiology. 2009;113:12–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Hasselblad V, Gattis SW, Shah MR, et al. Relation between dose of loop diuretics and outcomes in a heart failure population: results of the ESCAPE trial. Eur J Heart Fail. 2007;9: 1064–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Weaver A, Sica DA. Mannitol-induced acute renal failure. Nephron. 1987;45:233–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Eveloff J, Warnock DG. Renal carbonic anhydrase. In: Dirks JH, Sutton RA, editors. Diuretics: physiology, pharmacology and clinical use. Philadelphia: WB Saunders; 1986. p. 49–65.Google Scholar
  26. 26.
    Cogan MG, Maddox DA, Warnock DG, et al. Effect of acetazolamide on bicarbonate reabsorption in the proximal tubule of the rat. Am J Physiol. 1979;237:F447.PubMedGoogle Scholar
  27. 27.
    Kassamali R, Sica DA. Acetazolamide—a forgotten diuretic agent. Cardiol Rev. 2011;19: 276–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Khan MI. Treatment of refractory congestive heart failure and normokalemic hypochloremic alkalosis with acetazolamide and spironolactone. Can Med Assoc J. 1980;123:883–7.PubMedGoogle Scholar
  29. 29.
    Knauf H, Mutschler E. Sequential nephron blockade breaks resistance to diuretics in edematous states. J Cardiovasc Pharmacol. 1997;29:367–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Mazur JE, Devlin JW, Peters MJ, et al. Single versus multiple doses of acetazolamide for metabolic alkalosis in critically ill medical patients: a randomized, double-blind trial. Crit Care Med. 1999;27:1257–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Leary WP, Reyes AJ. Diuretic-induced magnesium losses. Drugs. 1984;28 Suppl 1:182–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Kamalov G, Bhattacharya SK, Weber KT. Congestive heart failure: where homeostasis begets dyshomeostasis. J Cardiovasc Pharmacol. 2010;56:320–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Beerman B, Groschinsky-Grind M. Pharmacokinetics of hydrochlorothiazide in patients with congestive heart failure. Br J Clin Pharmacol. 1979;7:579–83.CrossRefGoogle Scholar
  34. 34.
    Sica DA, Gehr TWB. Diuretic combinations in refractory edema states: pharmacokinetic/pharmacodynamic relationships. Clin Pharmacokinet. 1996;30:229–49.PubMedCrossRefGoogle Scholar
  35. 35.
    Rosenberg J, Gustafsson F, Galatius S, et al. Combination therapy with metolazone and loop diuretics in outpatients with refractory heart failure: an observational study and review of the literature. Cardiovasc Drugs Ther. 2005;19:301–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Dormans TP, Gerlag PG. Combination of high-dose furosemide and hydrochlorothiazide in the treatment of refractory congestive heart failure. Eur Heart J. 1996;17:1867–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Sica DA. Pharmacotherapy in congestive heart failure: metolazone and its role in edema management. Cong Heart Fail. 2003;9:100–5.CrossRefGoogle Scholar
  38. 38.
    Shankar SS, Brater DC. Loop diuretics: from the Na-K-2Cl transporter to clinical use. Am J Physiol Renal Physiol. 2003;284:F11–21.PubMedGoogle Scholar
  39. 39.
    Liguori A, Casini A, Di Loreto M, et al. Loop diuretics enhance the secretion of prostacyclin in vitro, in healthy persons, and in patients with chronic heart failure. Eur J Clin Pharmacol. 1999;55:117–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Sjöström PA, Kron BG, Odlind BG. Changes in renal clearance of furosemide due to changes in renal blood flow and plasma albumin concentration. Eur J Clin Pharmacol. 1993;45:135–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Dixey JJ, Noormohamed FH, Pawa JS, et al. The influence of nonsteroidal anti-inflammatory drugs and probenecid on the renal response to and kinetics of piretanide in man. Clin Pharmacol Ther. 1988;44:531–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Brater DC. Diuretic therapy. N Engl J Med. 1998;339:387–95.PubMedCrossRefGoogle Scholar
  43. 43.
    Brater DC. Pharmacokinetics of loop diuretics in congestive heart failure. Br Heart J. 1994;72 Suppl 2:S40–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Murphy CA, Dargie HJ. Drug-induced cardiovascular disorders. Drug Saf. 2007;30: 783–804.PubMedCrossRefGoogle Scholar
  45. 45.
    Heerdink ER, Leufkens HG, Herings RM, et al. NSAIDs associated with increased risk of congestive heart failure in elderly patients taking diuretics. Arch Intern Med. 1998;158:1108–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Murray MD, Haag KM, Black PK, et al. Variable furosemide absorption and poor predictability of response in elderly patients. Pharmacotherapy. 1997;17:98–106.PubMedGoogle Scholar
  47. 47.
    Vargo DL, Kramer WG, Black PK, et al. Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide and furosemide in patients with congestive heart failure. Clin Pharmacol Ther. 1995;57:601–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Murray MD, Deer MM, Ferguson JA, et al. Open-label randomized trial of torsemide compared with furosemide therapy for patients with heart failure. Am J Med. 2001;111:513–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Sica DA, Gehr TW. Diuretic use in stage 5 chronic kidney disease and end-stage renal disease. Curr Opin Nephrol Hypertens. 2003;12:483–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Maschio G, D’Angelo A, Fabris A, et al. Long-term effects of low-dose thiazide and amiloride administration in recurrent renal stone formers. Contrib Nephrol. 1985;49:108–17.PubMedGoogle Scholar
  51. 51.
    Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21.PubMedCrossRefGoogle Scholar
  53. 53.
    Gardiner P, Schrode K, Quinlan D, et al. Spironolactone metabolism: steady-state serum levels of the sulfur-containing metabolites. J Clin Pharmacol. 1989;29:342–7.PubMedGoogle Scholar
  54. 54.
    Reyes AJ, Leary WP, Crippa G, et al. The aldosterone antagonist and facultative diuretic eplerenone: a critical review. Eur J Intern Med. 2005;16:3–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Cheitlin MD, Byrd R, Benowitz N, et al. Amiloride improves hemodynamics in patients with chronic congestive heart failure treated with chronic digoxin and diuretics. Cardiovasc Drugs Ther. 1991;5:719–25.PubMedCrossRefGoogle Scholar
  56. 56.
    Zheng H, Liu X, Rao US, et al. Increased renal ENaC subunits and sodium retention in rats with chronic heart failure. Am J Physiol Renal Physiol. 2011;300:F641–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Kohvakka A. Maintenance of potassium balance during long-term diuretic therapy in chronic heart failure patients with thiazide-induced hypokalemia: comparison of potassium supplementation with potassium chloride and potassium-sparing agents, amiloride and triamterene. Int J Clin Pharmacol Ther Toxicol. 1988;26:273–7.PubMedGoogle Scholar
  58. 58.
    Favre L, Glasson P, Vallotton MB. Reversible acute renal failure from combined triamterene and indomethacin: a study in healthy subjects. Ann Intern Med. 1982;96:317–20.PubMedGoogle Scholar
  59. 59.
    Torp M, Brønd L, Nielsen JB, et al. Effects of renal denervation on the NKCC2 co-transporter in the thick ascending limb of the loop of Henle in rats with congestive heart failure. Acta Physiol (Oxf). 2011. doi:10.1111/j.1748-1716.2011.02351.x [Epub ahead of print]Google Scholar
  60. 60.
    Vasko MR, Brown-Cartwright D, Knochel JP, et al. Furosemide absorption altered in decompensated congestive heart failure. Ann Intern Med. 1985;102:314–8.PubMedGoogle Scholar
  61. 61.
    Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50:1561–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Addisu A, Gower Jr WR, Serrano M, et al. Heart failure mice exhibit decreased gastric emptying and intestinal absorption. Exp Biol Med (Maywood). 2011;236:1454–60.CrossRefGoogle Scholar
  63. 63.
    Kelly RA, Wilcox CS, Mitch WE, et al. Response of the kidney to furosemide. II. Effect of captopril on sodium balance. Kidney Int. 1983;24:233–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Wilcox CS, Guzman NJ, Mitch WE, et al. Na+ and BP homeostasis in man during furosemide: effects of prazosin and captopril. Kidney Int. 1987;31:135–41.PubMedCrossRefGoogle Scholar
  65. 65.
    Almeshari K, Ahlstom NG, Capraro FE, et al. A volume-independent component to post-diuretic sodium retention in man. J Am Soc Nephrol. 1993;3:1878–83.PubMedGoogle Scholar
  66. 66.
    Ellison DH, Velazquez H, Wright FS. Adaptation of the distal convoluted tubule of the rat. Structural and functional effects of dietary salt intake and chronic diuretic infusion. J Clin Invest. 1989;83:113–26.PubMedCrossRefGoogle Scholar
  67. 67.
    Wilcox CS, Mitch WE, Kelly RA, et al. Response of the kidney to furosemide. I. Effects of salt intake and renal compensation. J Lab Clin Med. 1983;102:450–8.PubMedGoogle Scholar
  68. 68.
    Abdallah JG, Schrier RW, Edelstein C, et al. Loop diuretic infusion increases thiazide-sensitive Na(+)/Cl(−)-cotransporter abundance: role of aldosterone. J Am Soc Nephrol. 2001;12: 1335–41.PubMedGoogle Scholar
  69. 69.
    Loon NR, Wilcox CS, Unwin RJ. Mechanism of impaired natriuretic response to furosemide during prolonged therapy. Kidney Int. 1989;36:682–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Ellison DH. The physiologic basis of diuretic synergism: its role in treating diuretic resistance. Ann Intern Med. 1991;114:886–94.PubMedGoogle Scholar
  71. 71.
    Salvador DR, Rey NR, Ramos GC, Punzalan FE. Continuous infusion versus bolus injection of loop diuretics in congestive heart failure. Cochrane Database Syst Rev. 2004;1:CD003178.PubMedGoogle Scholar
  72. 72.
    Dikshit K, Vyden JK, Forrester JS, et al. Renal and extrarenal hemodynamic effects of furosemide in congestive heart failure after acute myocardial infarction. N Engl J Med. 1973;288: 1087–90.PubMedCrossRefGoogle Scholar
  73. 73.
    Kramer BK, Schweda F, Riegger GAJ. Diuretic treatment and diuretic resistance in heart failure. Am J Med. 1999;106:90–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Flapan AD, Davies E, Waugh C, et al. Posture determines the nature of the interaction between angiotensin converting enzyme inhibitors and loop diuretics in patients with chronic cardiac failure. Int J Cardiol. 1991;33:377–83.PubMedCrossRefGoogle Scholar
  75. 75.
    Galiwango PJ, McReynolds A, Ivanov J, et al. Activity with ambulation attenuates diuretic responsiveness in chronic heart failure. J Card Fail. 2011;17:797–803.PubMedCrossRefGoogle Scholar
  76. 76.
    Galve E, Malloi A, Catalan R, et al. Clinical and neurohumoral consequences of diuretic withdrawal in patients with chronic, stabilized, heart failure and systolic dysfunction. Eur J Heart Fail. 2005;7:892–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Marangoni E, Oddone A, Surian M, et al. Effect of high-dose furosemide in refractory congestive heart failure. Angiology. 1990;41:862–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Gerlag PG, van Meijel JJ. High-dose furosemide in the treatment of refractory congestive heart failure. Arch Intern Med. 1988;148:286–91.PubMedCrossRefGoogle Scholar
  79. 79.
    Rudy DW, Voelker JR, Greene PK, et al. Loop diuretics for chronic renal insufficiency: a continuous infusion is more efficacious than bolus therapy. Ann Intern Med. 1991;115:360–6.PubMedGoogle Scholar
  80. 80.
    Lahav M, Regev A, Ra’anani P, et al. Intermittent administration of furosemide vs. continuous infusion preceded by a loading dose for congestive heart failure. Chest. 1992;102:725–31.PubMedCrossRefGoogle Scholar
  81. 81.
    Felker GM, Lee KL, Bull DA, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364:797–805.PubMedCrossRefGoogle Scholar
  82. 82.
    Jentzer JC, DeWald TA, Hernandez AF. Combination of loop diuretics with thiazide-type diuretics in heart failure. J Am Coll Cardiol. 2010;56:1527–34.PubMedCrossRefGoogle Scholar
  83. 83.
    Barr CS, Lang CC, Hanson J, et al. Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1995;76:1259–65.PubMedCrossRefGoogle Scholar
  84. 84.
    Farquharson CAJ, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation. 2000;101:594–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Weber KT. Aldosterone in congestive heart failure. N Engl J Med. 2001;345:1689–97.PubMedCrossRefGoogle Scholar
  86. 86.
    Pitt B, Zannad F, Rime WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999;341:709–17.PubMedCrossRefGoogle Scholar
  87. 87.
    Udelson JE, Bilsker M, Hauptman PJ, Sequeira R, Thomas I, O’Brien T, et al. A multicenter, randomized, double-blind, placebo-controlled study of tolvaptan monotherapy compared to furosemide and the combination of tolvaptan and furosemide in patients with heart failure and systolic dysfunction. J Card Fail. 2011;17:973–81.PubMedCrossRefGoogle Scholar
  88. 88.
    Costanzo MR, Jessup M. Treatment of congestion in heart failure with diuretics and extracorporeal therapies: effects on symptoms, renal function and prognosis. Heart Fail Rev. 2011 [Epub ahead of print]Google Scholar
  89. 89.
    Cpstanzo MR, Guglin ME, Saltzverg MT, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2007;49:675–83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Clinical Pharmacology and HypertensionVirginia Commonwealth University Health SystemRichmondUSA

Personalised recommendations