Skip to main content

Regulation of Angiogenesis by Tumour Suppressor Pathways

  • Chapter
  • First Online:
Experimental and Clinical Metastasis

Abstract

Angiogenesis, the process of formation of new blood vessels from existing vasculature, is a normal process during embryogenesis, wound healing, and the female reproductive cycle. During cancer progression, tumour cells develop the capacity to stimulate pathological angiogenesis. This “angiogenic switch” allows tumours to rapidly grow from small, avascular lesions less than 2 mm in diameter into large, vascularized tumours.

The angiogenic switch is thought to be triggered by a change in the balance of pro- and anti-angiogenic factors found in the extracellular space. Tumour suppressor proteins negatively regulate angiogenesis by shutting down production of pro-angiogenic factors and stimulating anti-angiogenic ones. This chapter will focus on the mechanisms by which tumour suppressor proteins, including VHL, PTEN, RB, and p53 inhibit angiogenesis.

In the clinic, anti-angiogenic therapies are being developed with the goal of maintaining tumours in the dormant, avascular state that exists before the angiogenic switch. VEGF, a pro-angiogenic factor regulated by each of the tumour suppressor proteins discussed in this chapter (VHL, PTEN, RB, and p53), is a major target in anti-angiogenic therapy. However, inhibition of a single pro-angiogenic factor (such as VEGF) has limited clinical efficacy, in part due to acquired resistance mutations which result in upregulation of other pro-angiogenic factors. In addition, inhibition of angiogenesis can accelerate metastasis. Thus, more promising approaches to anti-angiogenic therapy would involve mimicking tumour suppressor function by utilizing multiple pathways to target tumour angiogenesis, or combination therapy with anti-angiogenic and anti-metastatic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andarawewa KL et al (2003) Dual stromelysin-3 function during natural mouse mammary tumor virus-ras tumor progression. Cancer Res 63:5844–5849

    PubMed  CAS  Google Scholar 

  • Assadian S, Teodoro JG (2008) Regulation of collagen-derived antiangiogenic factors by p53. Expert Opin Biol Ther 8:941–950

    Article  PubMed  CAS  Google Scholar 

  • Attardi LD, Donehower LA (2005) Probing p53 biological functions through the use of genetically engineered mouse models. Mutat Res 576:4–21

    Article  PubMed  CAS  Google Scholar 

  • Balbin M et al (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35:252–257

    Article  PubMed  CAS  Google Scholar 

  • Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  • Betchen SA, Musatov S, Roberts J, Pena J, Kaplitt MG (2006) PTEN inhibits adrenomedullin expression and function in brain tumor cells. J Neurooncol 79:117–123

    Article  PubMed  CAS  Google Scholar 

  • Bian J, Sun Y (1997) Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter. Mol Cell Biol 17:6330–6338

    PubMed  CAS  Google Scholar 

  • Brantley DM et al (2002) Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21:7011–7026

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3):4–10

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  • Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27:5527–5541

    Article  PubMed  CAS  Google Scholar 

  • Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  PubMed  CAS  Google Scholar 

  • Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Chenau J et al (2009) The cell line secretome, a suitable tool for investigating proteins released in vivo by tumors: application to the study of p53-modulated proteins secreted in lung cancer cells. J Proteome Res 8:4579–4591

    Article  PubMed  CAS  Google Scholar 

  • Claudio PP et al (2001) RB2/p130 gene-enhanced expression down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in vivo. Cancer Res 61:462–468

    PubMed  CAS  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  PubMed  CAS  Google Scholar 

  • Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265:1582–1584

    Article  PubMed  CAS  Google Scholar 

  • DeCaprio JA (2009) How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 384:274–284

    Article  PubMed  CAS  Google Scholar 

  • Dohn M, Jiang J, Chen X (2001) Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene 20:6503–6515

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Kumar R, Yang X, Fidler IJ (1997) Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88:801–810

    Article  PubMed  CAS  Google Scholar 

  • Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M (2007) Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci U S A 104:967–972

    Article  PubMed  CAS  Google Scholar 

  • Dunn JM, Phillips RA, Becker AJ, Gallie BL (1988) Identification of germline and somatic mutations affecting the retinoblastoma gene. Science 241:1797–1800

    Article  PubMed  CAS  Google Scholar 

  • Ebos JM et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  PubMed  CAS  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  PubMed  CAS  Google Scholar 

  • Eitel JA et al (2009) PTEN and p53 are required for hypoxia induced expression of maspin in glioblastoma cells. Cell Cycle 8:896–901

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Ding M, Yang L, Liu LZ, Jiang BH (2007) PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal 19:2487–2497

    Article  PubMed  CAS  Google Scholar 

  • Faviana P et al (2002) Neoangiogenesis in colon cancer: correlation between vascular density, vascular endothelial growth factor (VEGF) and p53 protein expression. Oncol Rep 9:617–620

    PubMed  CAS  Google Scholar 

  • Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaisse J (2000) Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 486:247–251

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  CAS  Google Scholar 

  • Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133:275–288

    Article  PubMed  CAS  Google Scholar 

  • Freije JM et al (2003) Matrix metalloproteinases and tumor progression. Adv Exp Med Biol 532:91–107

    Article  PubMed  CAS  Google Scholar 

  • Gasparini G et al (1993) Intratumoral microvessel density and p53 protein: correlation with metastasis in head-and-neck squamous-cell carcinoma. Int J Cancer 55:739–744

    Article  PubMed  CAS  Google Scholar 

  • Gasparini G et al (1994) Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. J Clin Oncol 12:454–466

    PubMed  CAS  Google Scholar 

  • Gautam A, Densmore CL, Melton S, Golunski E, Waldrep JC (2002) Aerosol delivery of PEI-p53 complexes inhibits B16-F10 lung metastases through regulation of angiogenesis. Cancer Gene Ther 9:28–36

    Article  Google Scholar 

  • Giri D, Ittmann M (1999) Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma. Hum Pathol 30:419–424

    Article  PubMed  CAS  Google Scholar 

  • Good DJ et al (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A 87:6624–6628

    Article  PubMed  CAS  Google Scholar 

  • Gorrin-Rivas MJ et al (2000) Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin Cancer Res 6:1647–1654

    PubMed  CAS  Google Scholar 

  • Grana X, Garriga J, Mayol X (1998) Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17:3365–3383

    Article  PubMed  Google Scholar 

  • Hamada K et al (2005) The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev 19:2054–2065

    Article  PubMed  CAS  Google Scholar 

  • Hamano Y et al (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3:589–601

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  • Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14:2393–2409

    Article  PubMed  CAS  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  • Holmgren L, Jackson G, Arbiser J (1998) p53 induces angiogenesis-restricted dormancy in a mouse fibrosarcoma. Oncogene 17:819–824

    Article  PubMed  CAS  Google Scholar 

  • Houghton AM et al (2006) Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 66:6149–6155

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Kontos CD (2002) PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects. J Biol Chem 277:10760–10766

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz H et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Janz A, Sevignani C, Kenyon K, Ngo CV, Thomas-Tikhonenko A (2000) Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res 28:2268–2275

    Article  PubMed  CAS  Google Scholar 

  • Jiang BH et al (2001) Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 12:363–369

    PubMed  CAS  Google Scholar 

  • Jiang BH, Liu LZ (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65

    Google Scholar 

  • Jiang BH, Zheng JZ, Aoki M, Vogt PK (2000) Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci U S A 97:1749–1753

    Article  PubMed  CAS  Google Scholar 

  • Jost M et al (2006) Earlier onset of tumoral angiogenesis in matrix metalloproteinase-19-deficient mice. Cancer Res 66:5234–5241

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433

    Article  PubMed  CAS  Google Scholar 

  • Kaluzova M, Kaluz S, Lerman MI, Stanbridge EJ (2004) DNA damage is a prerequisite for p53-mediated proteasomal degradation of HIF-1alpha in hypoxic cells and downregulation of the hypoxia marker carbonic anhydrase IX. Mol Cell Biol 24:5757–5766

    Article  PubMed  CAS  Google Scholar 

  • Kang SM et al (1997) Combined analysis of p53 and vascular endothelial growth factor expression in colorectal carcinoma for determination of tumor vascularity and liver metastasis. Int J Cancer 74:502–507

    Article  PubMed  CAS  Google Scholar 

  • Latif F et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1317–1320

    Article  PubMed  CAS  Google Scholar 

  • Li G et al (2006) PTEN deletion leads to up-regulation of a secreted growth factor pleiotrophin. J Biol Chem 281:10663–10668

    Article  PubMed  CAS  Google Scholar 

  • Li J et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  PubMed  CAS  Google Scholar 

  • Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    Article  PubMed  CAS  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  PubMed  CAS  Google Scholar 

  • Matsushima-Nishiu M et al (2001) Growth and gene expression profile analyses of endometrial cancer cells expressing exogenous PTEN. Cancer Res 61:3741–3749

    PubMed  CAS  Google Scholar 

  • Mayo LD, Donner DB (2002) The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27:462–467

    Article  PubMed  CAS  Google Scholar 

  • McCawley LJ, Crawford HC, King LE Jr, Mudgett J, Matrisian LM (2004) A protective role for matrix metalloproteinase-3 in squamous cell carcinoma. Cancer Res 64:6965–6972

    Article  PubMed  CAS  Google Scholar 

  • Mikelis C, Papadimitriou E (2008) Heparin-binding protein pleiotrophin: an important player in the angiogenic process. Connect Tissue Res 49:149–152

    Article  PubMed  CAS  Google Scholar 

  • Miled C, Pontoglio M, Garbay S, Yaniv M, Weitzman JB (2005) A genomic map of p53 binding sites identifies novel p53 targets involved in an apoptotic network. Cancer Res 65:5096–5104

    Article  PubMed  CAS  Google Scholar 

  • Miller K et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  PubMed  CAS  Google Scholar 

  • Mittnacht S (1998) Control of pRB phosphorylation. Curr Opin Genet Dev 8:21–27

    Article  PubMed  CAS  Google Scholar 

  • Momand J, Wu HH, Dasgupta G (2000) MDM2–master regulator of the p53 tumor suppressor protein. Gene 242:15–29

    Google Scholar 

  • Montel V et al (2004) Altered metastatic behavior of human breast cancer cells after experimental manipulation of matrix metalloproteinase 8 gene expression. Cancer Res 64:1687–1694

    Article  PubMed  CAS  Google Scholar 

  • Munger K, Howley PM (2002) Human papillomavirus immortalization and transformation functions. Virus Res 89:213–228

    Article  PubMed  CAS  Google Scholar 

  • Myers MP et al (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci U S A 95:13513–13518

    Article  PubMed  CAS  Google Scholar 

  • Nikitenko LL, Fox SB, Kehoe S, Rees MC, Bicknell R (2006) Adrenomedullin and tumour angiogenesis. Br J Cancer 94:1–7

    Article  PubMed  CAS  Google Scholar 

  • Nishimori H et al (1997) A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15:2145–2150

    Article  PubMed  CAS  Google Scholar 

  • Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65:3967–3979

    Article  PubMed  CAS  Google Scholar 

  • Ohh M et al (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly MS, Wiederschain D, Stetler-Stevenson WG, Folkman J, Moses MA (1999) Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274:29568–29571

    Article  PubMed  Google Scholar 

  • Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239

    Article  PubMed  CAS  Google Scholar 

  • Packer L et al (2006) Osteopontin is a downstream effector of the PI3-kinase pathway in melanomas that is inversely correlated with functional PTEN. Carcinogenesis 27:1778–1786

    Article  PubMed  CAS  Google Scholar 

  • Paez-Ribes M et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    Article  PubMed  CAS  Google Scholar 

  • Pal S, Datta K, Mukhopadhyay D (2001) Central role of p53 on regulation of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in mammary carcinoma. Cancer Res 61:6952–6957

    PubMed  CAS  Google Scholar 

  • Pan Y, Oprysko PR, Asham AM, Koch CJ, Simon MC (2004) p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene 23:4975–4983

    Article  PubMed  CAS  Google Scholar 

  • Patterson BC, Sang QA (1997) Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 272:28823–28825

    Article  PubMed  CAS  Google Scholar 

  • Pendas AM et al (2004) Diet-induced obesity and reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice. Mol Cell Biol 24:5304–5313

    Article  PubMed  CAS  Google Scholar 

  • Pozzi A, LeVine WF, Gardner HA (2002) Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 21:272–281

    Article  PubMed  CAS  Google Scholar 

  • Rak J, Yu JL (2004) Oncogenes and tumor angiogenesis: the question of vascular “supply” and vascular “demand”. Semin Cancer Biol 14:93–104

    Google Scholar 

  • Rak J et al (2000) Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res 60:490–498

    PubMed  CAS  Google Scholar 

  • Rangaswami H, Bulbule A, Kundu GC (2006) Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16:79–87

    Google Scholar 

  • Ravi R et al (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14:34–44

    Google Scholar 

  • Relf M et al (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57:963–969

    PubMed  CAS  Google Scholar 

  • Rempe DA, Lelli KM, Vangeison G, Johnson RS, Federoff HJ (2007) In cultured astrocytes, p53 and MDM2 do not alter hypoxia-inducible factor-1alpha function regardless of the presence of DNA damage. J Biol Chem 282:16187–16201

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Nico B, Crivellato E, Roccaro AM, Vacca A (2007) The history of the angiogenic switch concept. Leukemia 21:44–52

    Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  • Shao J, Washington MK, Saxena R, Sheng H (2007) Heterozygous disruption of the PTEN promotes intestinal neoplasia in APCmin/ +mouse: roles of osteopontin. Carcinogenesis 28:2476–2483

    Article  PubMed  CAS  Google Scholar 

  • Sherif ZA, Nakai S, Pirollo KF, Rait A, Chang EH (2001) Downmodulation of bFGF-binding protein expression following restoration of p53 function. Cancer Gene Ther 8:771–782

    Article  PubMed  CAS  Google Scholar 

  • Slack JL, Bornstein P (1994) Transformation by v-src causes transient induction followed by repression of mouse thrombospondin-1. Cell Growth Differ 5:1373–1380

    PubMed  CAS  Google Scholar 

  • Stambolic V et al (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39

    Article  PubMed  CAS  Google Scholar 

  • Stanelle J, Stiewe T, Theseling CC, Peter M, Putzer BM (2002) Gene expression changes in response to E2F1 activation. Nucleic Acids Res 30:1859–1867

    Article  PubMed  CAS  Google Scholar 

  • Steck PA et al (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362

    CAS  Google Scholar 

  • Subbaramaiah K et al (1999) Inhibition of cyclooxygenase-2 gene expression by p53. J Biol Chem 274:10911–10915

    Article  PubMed  CAS  Google Scholar 

  • Sudhakar A et al (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci U S A 100:4766–4771

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Wang J, Liu Y, Song X, Zhang Y, Li K, Zhu Y, Zhou Q, You L, Yao C (2005) Results of phase III trial of rh-endostatin (YH-16) in advanced non-small cell lung cancer (NSCLC) patients. J Clin Oncol 23:7138

    Article  CAS  Google Scholar 

  • Takahashi Y, Bucana CD, Cleary KR, Ellis LM (1998) p53, vessel count, and vascular endothelial growth factor expression in human colon cancer. Int J Cancer 79:34–38

    Article  PubMed  CAS  Google Scholar 

  • Teodoro JG, Parker AE, Zhu X, Green MR (2006) p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313:968–971

    Article  PubMed  CAS  Google Scholar 

  • Teodoro JG, Evans SK, Green MR (2007) Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med 85:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Tikhonenko AT, Black DJ, Linial ML (1996) Viral Myc oncoproteins in infected fibroblasts down-modulate thrombospondin-1, a possible tumor suppressor gene. J Biol Chem 271:30741–30747

    Article  PubMed  CAS  Google Scholar 

  • Toussaint-Smith E, Donner DB, Roman A (2004) Expression of human papillomavirus type 16 E6 and E7 oncoproteins in primary foreskin keratinocytes is sufficient to alter the expression of angiogenic factors. Oncogene 23:2988–2995

    Article  PubMed  CAS  Google Scholar 

  • Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    Article  PubMed  CAS  Google Scholar 

  • Ueba T et al (1994) Transcriptional regulation of basic fibroblast growth factor gene by p53 in human glioblastoma and hepatocellular carcinoma cells. Proc Natl Acad Sci U S A 91:9009–9013

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (1992) p53 function and dysfunction. Cell 70:523–526

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  • Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  • Wang S et al (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4:209–221

    Article  PubMed  CAS  Google Scholar 

  • Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA (2003) Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3:219–231

    Article  PubMed  CAS  Google Scholar 

  • Wei CL et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219

    Article  PubMed  CAS  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330

    Article  PubMed  CAS  Google Scholar 

  • Wen S et al (2001) PTEN controls tumor-induced angiogenesis. Proc Natl Acad Sci U S A 98:4622–4627

    Article  PubMed  CAS  Google Scholar 

  • Xia G et al (2006) Expression and significance of vascular endothelial growth factor receptor 2 in bladder cancer. J Urol 175:1245–1252

    Article  PubMed  CAS  Google Scholar 

  • Yamakuchi M et al (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A 107:6334–6339

    Article  PubMed  CAS  Google Scholar 

  • Yee KS, Vousden KH (2005) Complicating the complexity of p53. Carcinogenesis 26:1317–1322

    Article  PubMed  CAS  Google Scholar 

  • Yu EY, Yu E, Meyer GE, Brawer MK (1997) The relation of p53 protein nuclear accumulation and angiogenesis in human prostatic carcinoma. Prostate Cancer Prostatic Dis 1:39–44

    Article  PubMed  Google Scholar 

  • Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66:4795–4801

    Article  PubMed  CAS  Google Scholar 

  • Yuan TL et al (2008) Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proc Natl Acad Sci U S A 105:9739–9744

    Article  PubMed  CAS  Google Scholar 

  • Zhong H et al (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541–1545

    PubMed  CAS  Google Scholar 

  • Zundel W et al (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14:391–396

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in the lab of J.G.T. is supported by funding from the Canadian Institute of Health Research (CIHR) and the Natural Science and Engineering Council of Canada. K.J.L. and S.A. are both supported by studentship from the CIHR. W.E. is the recipient of a post-doctoral training award form the McGill Integrated Cancer Research Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose G. Teodoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lefebvre, K.J., Assadian, S., El-Assaad, W., Teodoro, J. (2013). Regulation of Angiogenesis by Tumour Suppressor Pathways. In: Burnier, J., Burnier, Jr., M. (eds) Experimental and Clinical Metastasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3685-0_8

Download citation

Publish with us

Policies and ethics