Regulation of Angiogenesis by Tumour Suppressor Pathways

  • Karen J. Lefebvre
  • Sarah Assadian
  • Wissal El-Assaad
  • Jose G. Teodoro
Chapter

Abstract

Angiogenesis, the process of formation of new blood vessels from existing vasculature, is a normal process during embryogenesis, wound healing, and the female reproductive cycle. During cancer progression, tumour cells develop the capacity to stimulate pathological angiogenesis. This “angiogenic switch” allows tumours to rapidly grow from small, avascular lesions less than 2 mm in diameter into large, vascularized tumours.

The angiogenic switch is thought to be triggered by a change in the balance of pro- and anti-angiogenic factors found in the extracellular space. Tumour suppressor proteins negatively regulate angiogenesis by shutting down production of pro-angiogenic factors and stimulating anti-angiogenic ones. This chapter will focus on the mechanisms by which tumour suppressor proteins, including VHL, PTEN, RB, and p53 inhibit angiogenesis.

In the clinic, anti-angiogenic therapies are being developed with the goal of maintaining tumours in the dormant, avascular state that exists before the angiogenic switch. VEGF, a pro-angiogenic factor regulated by each of the tumour suppressor proteins discussed in this chapter (VHL, PTEN, RB, and p53), is a major target in anti-angiogenic therapy. However, inhibition of a single pro-angiogenic factor (such as VEGF) has limited clinical efficacy, in part due to acquired resistance mutations which result in upregulation of other pro-angiogenic factors. In addition, inhibition of angiogenesis can accelerate metastasis. Thus, more promising approaches to anti-angiogenic therapy would involve mimicking tumour suppressor function by utilizing multiple pathways to target tumour angiogenesis, or combination therapy with anti-angiogenic and anti-metastatic agents.

Keywords

Migration Proline Integrin Psoriasis Bevacizumab 

Notes

Acknowledgements

Research in the lab of J.G.T. is supported by funding from the Canadian Institute of Health Research (CIHR) and the Natural Science and Engineering Council of Canada. K.J.L. and S.A. are both supported by studentship from the CIHR. W.E. is the recipient of a post-doctoral training award form the McGill Integrated Cancer Research Training Program.

References

  1. Andarawewa KL et al (2003) Dual stromelysin-3 function during natural mouse mammary tumor virus-ras tumor progression. Cancer Res 63:5844–5849PubMedGoogle Scholar
  2. Assadian S, Teodoro JG (2008) Regulation of collagen-derived antiangiogenic factors by p53. Expert Opin Biol Ther 8:941–950PubMedCrossRefGoogle Scholar
  3. Attardi LD, Donehower LA (2005) Probing p53 biological functions through the use of genetically engineered mouse models. Mutat Res 576:4–21PubMedCrossRefGoogle Scholar
  4. Balbin M et al (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35:252–257PubMedCrossRefGoogle Scholar
  5. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410PubMedCrossRefGoogle Scholar
  6. Betchen SA, Musatov S, Roberts J, Pena J, Kaplitt MG (2006) PTEN inhibits adrenomedullin expression and function in brain tumor cells. J Neurooncol 79:117–123PubMedCrossRefGoogle Scholar
  7. Bian J, Sun Y (1997) Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter. Mol Cell Biol 17:6330–6338PubMedGoogle Scholar
  8. Brantley DM et al (2002) Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21:7011–7026PubMedCrossRefGoogle Scholar
  9. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3):4–10PubMedCrossRefGoogle Scholar
  10. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257PubMedCrossRefGoogle Scholar
  11. Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27:5527–5541PubMedCrossRefGoogle Scholar
  12. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309PubMedCrossRefGoogle Scholar
  13. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053–1061PubMedCrossRefGoogle Scholar
  14. Chenau J et al (2009) The cell line secretome, a suitable tool for investigating proteins released in vivo by tumors: application to the study of p53-modulated proteins secreted in lung cancer cells. J Proteome Res 8:4579–4591PubMedCrossRefGoogle Scholar
  15. Claudio PP et al (2001) RB2/p130 gene-enhanced expression down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in vivo. Cancer Res 61:462–468PubMedGoogle Scholar
  16. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392PubMedCrossRefGoogle Scholar
  17. Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265:1582–1584PubMedCrossRefGoogle Scholar
  18. DeCaprio JA (2009) How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 384:274–284PubMedCrossRefGoogle Scholar
  19. Dohn M, Jiang J, Chen X (2001) Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene 20:6503–6515PubMedCrossRefGoogle Scholar
  20. Dong Z, Kumar R, Yang X, Fidler IJ (1997) Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88:801–810PubMedCrossRefGoogle Scholar
  21. Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M (2007) Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci U S A 104:967–972PubMedCrossRefGoogle Scholar
  22. Dunn JM, Phillips RA, Becker AJ, Gallie BL (1988) Identification of germline and somatic mutations affecting the retinoblastoma gene. Science 241:1797–1800PubMedCrossRefGoogle Scholar
  23. Ebos JM et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239PubMedCrossRefGoogle Scholar
  24. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174PubMedCrossRefGoogle Scholar
  25. Eitel JA et al (2009) PTEN and p53 are required for hypoxia induced expression of maspin in glioblastoma cells. Cell Cycle 8:896–901PubMedCrossRefGoogle Scholar
  26. Fang J, Ding M, Yang L, Liu LZ, Jiang BH (2007) PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal 19:2487–2497PubMedCrossRefGoogle Scholar
  27. Faviana P et al (2002) Neoangiogenesis in colon cancer: correlation between vascular density, vascular endothelial growth factor (VEGF) and p53 protein expression. Oncol Rep 9:617–620PubMedGoogle Scholar
  28. Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaisse J (2000) Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 486:247–251PubMedCrossRefGoogle Scholar
  29. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18PubMedCrossRefGoogle Scholar
  30. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286CrossRefGoogle Scholar
  31. Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133:275–288PubMedCrossRefGoogle Scholar
  32. Freije JM et al (2003) Matrix metalloproteinases and tumor progression. Adv Exp Med Biol 532:91–107PubMedCrossRefGoogle Scholar
  33. Gasparini G et al (1993) Intratumoral microvessel density and p53 protein: correlation with metastasis in head-and-neck squamous-cell carcinoma. Int J Cancer 55:739–744PubMedCrossRefGoogle Scholar
  34. Gasparini G et al (1994) Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. J Clin Oncol 12:454–466PubMedGoogle Scholar
  35. Gautam A, Densmore CL, Melton S, Golunski E, Waldrep JC (2002) Aerosol delivery of PEI-p53 complexes inhibits B16-F10 lung metastases through regulation of angiogenesis. Cancer Gene Ther 9:28–36CrossRefGoogle Scholar
  36. Giri D, Ittmann M (1999) Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma. Hum Pathol 30:419–424PubMedCrossRefGoogle Scholar
  37. Good DJ et al (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A 87:6624–6628PubMedCrossRefGoogle Scholar
  38. Gorrin-Rivas MJ et al (2000) Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin Cancer Res 6:1647–1654PubMedGoogle Scholar
  39. Grana X, Garriga J, Mayol X (1998) Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17:3365–3383PubMedCrossRefGoogle Scholar
  40. Hamada K et al (2005) The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev 19:2054–2065PubMedCrossRefGoogle Scholar
  41. Hamano Y et al (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3:589–601PubMedCrossRefGoogle Scholar
  42. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRefGoogle Scholar
  43. Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14:2393–2409PubMedCrossRefGoogle Scholar
  44. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945PubMedCrossRefGoogle Scholar
  45. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53PubMedCrossRefGoogle Scholar
  46. Holmgren L, Jackson G, Arbiser J (1998) p53 induces angiogenesis-restricted dormancy in a mouse fibrosarcoma. Oncogene 17:819–824PubMedCrossRefGoogle Scholar
  47. Houghton AM et al (2006) Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 66:6149–6155PubMedCrossRefGoogle Scholar
  48. Huang J, Kontos CD (2002) PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects. J Biol Chem 277:10760–10766PubMedCrossRefGoogle Scholar
  49. Hurwitz H et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342PubMedCrossRefGoogle Scholar
  50. Janz A, Sevignani C, Kenyon K, Ngo CV, Thomas-Tikhonenko A (2000) Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res 28:2268–2275PubMedCrossRefGoogle Scholar
  51. Jiang BH et al (2001) Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 12:363–369PubMedGoogle Scholar
  52. Jiang BH, Liu LZ (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65Google Scholar
  53. Jiang BH, Zheng JZ, Aoki M, Vogt PK (2000) Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci U S A 97:1749–1753PubMedCrossRefGoogle Scholar
  54. Jost M et al (2006) Earlier onset of tumoral angiogenesis in matrix metalloproteinase-19-deficient mice. Cancer Res 66:5234–5241PubMedCrossRefGoogle Scholar
  55. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433PubMedCrossRefGoogle Scholar
  56. Kaluzova M, Kaluz S, Lerman MI, Stanbridge EJ (2004) DNA damage is a prerequisite for p53-mediated proteasomal degradation of HIF-1alpha in hypoxic cells and downregulation of the hypoxia marker carbonic anhydrase IX. Mol Cell Biol 24:5757–5766PubMedCrossRefGoogle Scholar
  57. Kang SM et al (1997) Combined analysis of p53 and vascular endothelial growth factor expression in colorectal carcinoma for determination of tumor vascularity and liver metastasis. Int J Cancer 74:502–507PubMedCrossRefGoogle Scholar
  58. Latif F et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1317–1320PubMedCrossRefGoogle Scholar
  59. Li G et al (2006) PTEN deletion leads to up-regulation of a secreted growth factor pleiotrophin. J Biol Chem 281:10663–10668PubMedCrossRefGoogle Scholar
  60. Li J et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947PubMedCrossRefGoogle Scholar
  61. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378PubMedCrossRefGoogle Scholar
  62. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274PubMedCrossRefGoogle Scholar
  63. Matsushima-Nishiu M et al (2001) Growth and gene expression profile analyses of endometrial cancer cells expressing exogenous PTEN. Cancer Res 61:3741–3749PubMedGoogle Scholar
  64. Mayo LD, Donner DB (2002) The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27:462–467PubMedCrossRefGoogle Scholar
  65. McCawley LJ, Crawford HC, King LE Jr, Mudgett J, Matrisian LM (2004) A protective role for matrix metalloproteinase-3 in squamous cell carcinoma. Cancer Res 64:6965–6972PubMedCrossRefGoogle Scholar
  66. Mikelis C, Papadimitriou E (2008) Heparin-binding protein pleiotrophin: an important player in the angiogenic process. Connect Tissue Res 49:149–152PubMedCrossRefGoogle Scholar
  67. Miled C, Pontoglio M, Garbay S, Yaniv M, Weitzman JB (2005) A genomic map of p53 binding sites identifies novel p53 targets involved in an apoptotic network. Cancer Res 65:5096–5104PubMedCrossRefGoogle Scholar
  68. Miller K et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676PubMedCrossRefGoogle Scholar
  69. Mittnacht S (1998) Control of pRB phosphorylation. Curr Opin Genet Dev 8:21–27PubMedCrossRefGoogle Scholar
  70. Momand J, Wu HH, Dasgupta G (2000) MDM2–master regulator of the p53 tumor suppressor protein. Gene 242:15–29Google Scholar
  71. Montel V et al (2004) Altered metastatic behavior of human breast cancer cells after experimental manipulation of matrix metalloproteinase 8 gene expression. Cancer Res 64:1687–1694PubMedCrossRefGoogle Scholar
  72. Munger K, Howley PM (2002) Human papillomavirus immortalization and transformation functions. Virus Res 89:213–228PubMedCrossRefGoogle Scholar
  73. Myers MP et al (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci U S A 95:13513–13518PubMedCrossRefGoogle Scholar
  74. Nikitenko LL, Fox SB, Kehoe S, Rees MC, Bicknell R (2006) Adrenomedullin and tumour angiogenesis. Br J Cancer 94:1–7PubMedCrossRefGoogle Scholar
  75. Nishimori H et al (1997) A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15:2145–2150PubMedCrossRefGoogle Scholar
  76. Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65:3967–3979PubMedCrossRefGoogle Scholar
  77. Ohh M et al (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427PubMedCrossRefGoogle Scholar
  78. O’Reilly MS, Wiederschain D, Stetler-Stevenson WG, Folkman J, Moses MA (1999) Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274:29568–29571PubMedCrossRefGoogle Scholar
  79. Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239PubMedCrossRefGoogle Scholar
  80. Packer L et al (2006) Osteopontin is a downstream effector of the PI3-kinase pathway in melanomas that is inversely correlated with functional PTEN. Carcinogenesis 27:1778–1786PubMedCrossRefGoogle Scholar
  81. Paez-Ribes M et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231PubMedCrossRefGoogle Scholar
  82. Pal S, Datta K, Mukhopadhyay D (2001) Central role of p53 on regulation of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in mammary carcinoma. Cancer Res 61:6952–6957PubMedGoogle Scholar
  83. Pan Y, Oprysko PR, Asham AM, Koch CJ, Simon MC (2004) p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene 23:4975–4983PubMedCrossRefGoogle Scholar
  84. Patterson BC, Sang QA (1997) Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 272:28823–28825PubMedCrossRefGoogle Scholar
  85. Pendas AM et al (2004) Diet-induced obesity and reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice. Mol Cell Biol 24:5304–5313PubMedCrossRefGoogle Scholar
  86. Pozzi A, LeVine WF, Gardner HA (2002) Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 21:272–281PubMedCrossRefGoogle Scholar
  87. Rak J, Yu JL (2004) Oncogenes and tumor angiogenesis: the question of vascular “supply” and vascular “demand”. Semin Cancer Biol 14:93–104Google Scholar
  88. Rak J et al (2000) Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res 60:490–498PubMedGoogle Scholar
  89. Rangaswami H, Bulbule A, Kundu GC (2006) Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16:79–87Google Scholar
  90. Ravi R et al (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14:34–44Google Scholar
  91. Relf M et al (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57:963–969PubMedGoogle Scholar
  92. Rempe DA, Lelli KM, Vangeison G, Johnson RS, Federoff HJ (2007) In cultured astrocytes, p53 and MDM2 do not alter hypoxia-inducible factor-1alpha function regardless of the presence of DNA damage. J Biol Chem 282:16187–16201PubMedCrossRefGoogle Scholar
  93. Ribatti D, Nico B, Crivellato E, Roccaro AM, Vacca A (2007) The history of the angiogenic switch concept. Leukemia 21:44–52Google Scholar
  94. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732PubMedCrossRefGoogle Scholar
  95. Shao J, Washington MK, Saxena R, Sheng H (2007) Heterozygous disruption of the PTEN promotes intestinal neoplasia in APCmin/ +mouse: roles of osteopontin. Carcinogenesis 28:2476–2483PubMedCrossRefGoogle Scholar
  96. Sherif ZA, Nakai S, Pirollo KF, Rait A, Chang EH (2001) Downmodulation of bFGF-binding protein expression following restoration of p53 function. Cancer Gene Ther 8:771–782PubMedCrossRefGoogle Scholar
  97. Slack JL, Bornstein P (1994) Transformation by v-src causes transient induction followed by repression of mouse thrombospondin-1. Cell Growth Differ 5:1373–1380PubMedGoogle Scholar
  98. Stambolic V et al (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39PubMedCrossRefGoogle Scholar
  99. Stanelle J, Stiewe T, Theseling CC, Peter M, Putzer BM (2002) Gene expression changes in response to E2F1 activation. Nucleic Acids Res 30:1859–1867PubMedCrossRefGoogle Scholar
  100. Steck PA et al (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362Google Scholar
  101. Subbaramaiah K et al (1999) Inhibition of cyclooxygenase-2 gene expression by p53. J Biol Chem 274:10911–10915PubMedCrossRefGoogle Scholar
  102. Sudhakar A et al (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci U S A 100:4766–4771PubMedCrossRefGoogle Scholar
  103. Sun Y, Wang J, Liu Y, Song X, Zhang Y, Li K, Zhu Y, Zhou Q, You L, Yao C (2005) Results of phase III trial of rh-endostatin (YH-16) in advanced non-small cell lung cancer (NSCLC) patients. J Clin Oncol 23:7138CrossRefGoogle Scholar
  104. Takahashi Y, Bucana CD, Cleary KR, Ellis LM (1998) p53, vessel count, and vascular endothelial growth factor expression in human colon cancer. Int J Cancer 79:34–38PubMedCrossRefGoogle Scholar
  105. Teodoro JG, Parker AE, Zhu X, Green MR (2006) p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313:968–971PubMedCrossRefGoogle Scholar
  106. Teodoro JG, Evans SK, Green MR (2007) Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med 85:1175–1186PubMedCrossRefGoogle Scholar
  107. Tikhonenko AT, Black DJ, Linial ML (1996) Viral Myc oncoproteins in infected fibroblasts down-modulate thrombospondin-1, a possible tumor suppressor gene. J Biol Chem 271:30741–30747PubMedCrossRefGoogle Scholar
  108. Toussaint-Smith E, Donner DB, Roman A (2004) Expression of human papillomavirus type 16 E6 and E7 oncoproteins in primary foreskin keratinocytes is sufficient to alter the expression of angiogenic factors. Oncogene 23:2988–2995PubMedCrossRefGoogle Scholar
  109. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799PubMedCrossRefGoogle Scholar
  110. Ueba T et al (1994) Transcriptional regulation of basic fibroblast growth factor gene by p53 in human glioblastoma and hepatocellular carcinoma cells. Proc Natl Acad Sci U S A 91:9009–9013PubMedCrossRefGoogle Scholar
  111. Vogelstein B, Kinzler KW (1992) p53 function and dysfunction. Cell 70:523–526PubMedCrossRefGoogle Scholar
  112. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310PubMedCrossRefGoogle Scholar
  113. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604PubMedCrossRefGoogle Scholar
  114. Wang S et al (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4:209–221PubMedCrossRefGoogle Scholar
  115. Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA (2003) Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3:219–231PubMedCrossRefGoogle Scholar
  116. Wei CL et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219PubMedCrossRefGoogle Scholar
  117. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330PubMedCrossRefGoogle Scholar
  118. Wen S et al (2001) PTEN controls tumor-induced angiogenesis. Proc Natl Acad Sci U S A 98:4622–4627PubMedCrossRefGoogle Scholar
  119. Xia G et al (2006) Expression and significance of vascular endothelial growth factor receptor 2 in bladder cancer. J Urol 175:1245–1252PubMedCrossRefGoogle Scholar
  120. Yamakuchi M et al (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A 107:6334–6339PubMedCrossRefGoogle Scholar
  121. Yee KS, Vousden KH (2005) Complicating the complexity of p53. Carcinogenesis 26:1317–1322PubMedCrossRefGoogle Scholar
  122. Yu EY, Yu E, Meyer GE, Brawer MK (1997) The relation of p53 protein nuclear accumulation and angiogenesis in human prostatic carcinoma. Prostate Cancer Prostatic Dis 1:39–44PubMedCrossRefGoogle Scholar
  123. Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66:4795–4801PubMedCrossRefGoogle Scholar
  124. Yuan TL et al (2008) Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proc Natl Acad Sci U S A 105:9739–9744PubMedCrossRefGoogle Scholar
  125. Zhong H et al (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541–1545PubMedGoogle Scholar
  126. Zundel W et al (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14:391–396PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Karen J. Lefebvre
    • 1
  • Sarah Assadian
    • 1
  • Wissal El-Assaad
    • 2
  • Jose G. Teodoro
    • 1
  1. 1.Goodman Cancer Research Centre and Department of BiochemistryMcGill UniversityMontrealCanada
  2. 2.Goodman Cancer Research CentreMcGill UniversityMontrealCanada

Personalised recommendations