Genomics and Proteomics

Chapter

Abstract

Understanding the specific changes that occurl in the DNA, RNA, and proteins of cancerous cells may allow for the identification of markers for early cancer detection, prevention and in the development of molecular-targeted treatments. Gene expression profiling is a powerful tool that allows for the evaluation of thousands of genes simultaneously and can provide insight into the complex interactions between genes in biologic specimen (Fingleton, Cancer Genomics–Proteomics 4:211–221, 2007). Proteomic tools have enabled the analysis of thousands of proteins and the identification of disease-specific proteins (Hudler et al, Clinical and Experimental Metastasis 27:441–451, 2010). These tools have the potential to lead to clinical applications such as improved diagnosis, an understanding specific tumor behavior, prognosis indicators and prediction of response to different treatment modalities.

Keywords

Formalin Toxicity Electrophoresis Trypsin Luminal 

References

  1. Abramovitz M, Leyland-Jones B (2006) A systems approach to clinical oncology: focus on breast cancer. Proteome Sci 4:5Google Scholar
  2. Adam BL et al (2002) Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 62:3609–3614PubMedGoogle Scholar
  3. Alaiya A, Al-Mohanna M, Linder S (2005) Clinical cancer proteomics: promises and pitfalls. J Proteome Res 4:1213–1222. doi:10.1021/pr050149fPubMedCrossRefGoogle Scholar
  4. Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322, 881–888. doi:322/5903/881 [pii] 10.1126/science.1156409PubMedCrossRefGoogle Scholar
  5. Bayani J, Squire JA (2004) Fluorescence in situ hybridization (FISH). Curr Protoc Cell Biol Chapter 22, Unit 22 24, doi:10.1002/0471143030.cb2204s23Google Scholar
  6. Brazma A et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371PubMedCrossRefGoogle Scholar
  7. Calin GA et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529. doi:10.1073/pnas.242606799 242606799 [pii]PubMedCrossRefGoogle Scholar
  8. Chaerkady R, Pandey A (2008) Applications of proteomics to lab diagnosis. Ann Rev Pathol 3:485–498CrossRefGoogle Scholar
  9. Caprioli RM (2005) Deciphering protein molecular signatures in cancer tissues to aid in diagnosis, prognosis, and therapy. Cancer Res 65:10642–10645. doi:65/23/10642 [pii] 10.1158/0008–5472.CAN-04–3581PubMedCrossRefGoogle Scholar
  10. Chung CH, Levy S, Chaurand P, Carbone DP (2007) Genomics and proteomics: emerging technologies in clinical cancer research. Crit Rev Oncol Hematol 61:1–25. doi:S1040–8428(06)00109–0 [pii] 10.1016/j.critrevonc.2006.06.005PubMedCrossRefGoogle Scholar
  11. Conway C et al (2009) Gene expression profiling of paraffin-embedded primary melanoma using the DASL assay identifies increased osteopontin expression as predictive of reduced relapse-free survival. Clin Cancer Res 15:6939–6946PubMedCrossRefGoogle Scholar
  12. Cornish TJ, Cotter RJ (1993) A curved-field reflectron for improved energy focusing of product ions in time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 7:P1037–P1040. doi:10.1002/rcm.1290071114CrossRefGoogle Scholar
  13. Couzin J (2008) MicroRNAs make big impression in disease after disease. Science 319:1782–1784. doi:319/5871/1782 [pii] 10.1126/science.319.5871.1782PubMedCrossRefGoogle Scholar
  14. DeRisi J et al (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14, 457–460. doi:10.1038/ng1296–457PubMedCrossRefGoogle Scholar
  15. Dumur CI et al (2008) Interlaboratory performance of a microarray-based gene expression test to determine tissue of origin in poorly differentiated and undifferentiated cancers. J Mol Diagn 10:67–77. doi:jmoldx.2008.070099 [pii] 10.2353/jmoldx.2008.070099PubMedCrossRefGoogle Scholar
  16. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71PubMedCrossRefGoogle Scholar
  17. Fingleton B (2007) Molecular targets in metastasis: lessons from genomic approaches. Cancer Genom Proteom 4:211–221Google Scholar
  18. Foulkes WD (2008) Inherited susceptibility to common cancers. N Engl J Med 359:2143–2153. doi:359/20/2143 [pii] 10.1056/NEJMra0802968PubMedCrossRefGoogle Scholar
  19. Futreal PA et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183. doi:10.1038/nrc1299 nrc1299 [pii]PubMedCrossRefGoogle Scholar
  20. Gonzalez-Angulo AM, Hennessy BT, Mills GB (2010) Future of personalized medicine in oncology: a systems biology approach. J Clin Oncol 28:2777–2783. doi:JCO.2009.27.0777 [pii] 10.1200/JCO.2009.27.0777PubMedCrossRefGoogle Scholar
  21. Goswami RS et al (2010) Optimization and analysis of a quantitative real-time PCR-based technique to determine microRNA expression in formalin-fixed paraffin-embedded samples. BMC Biotechnol 10:47. doi:1472–6750-10–47 [pii] 10.1186/1472–6750-10–47PubMedCrossRefGoogle Scholar
  22. Greenman C et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158. doi:nature05610 [pii] 10.1038/nature05610PubMedCrossRefGoogle Scholar
  23. Harris TJ, McCormick F (2010) The molecular pathology of cancer. Nature rev 7:251–265Google Scholar
  24. Henzel WJ et al(1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90:5011–5015PubMedCrossRefGoogle Scholar
  25. Hirschhorn JN (2009) Genomewide association studies–illuminating biologic pathways. N Engl J Med 360. 1699–1701. doi:NEJMp0808934 [pii] 10.1056/NEJMp0808934Google Scholar
  26. Hu Z et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96. doi:1471–2164-7–96 [pii] 10.1186/1471–2164-7–96Google Scholar
  27. Hanash S (2003) Disease proteomics. Nature 422:226–232, doi:10.1038/nature01514 nature01514 [pii]PubMedCrossRefGoogle Scholar
  28. Hudler P, Gorsic M, Komel R (2010) Proteomic strategies and challenges in tumor metastasis research. Clin Exp Metastasis 27:441–451. doi:1007/s10585–010-9339–7PubMedCrossRefGoogle Scholar
  29. Iwadate Y (2008) Clinical proteomics in cancer research-promises and limitations of current two-dimensional gel electrophoresis. Curr Med Chem 15:2393–2400PubMedCrossRefGoogle Scholar
  30. Jeffrey SS, Lonning PE, Hillner BE (2005) Genomics-based prognosis and therapeutic prediction in breast cancer. J Natl Compr Canc Netw 3:291–300PubMedGoogle Scholar
  31. Jr GW et al (1999) Proteinchip® surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis 2:264–276.doi:10.1038/sj.pcan.4500384 4500384 [pii]PubMedCrossRefGoogle Scholar
  32. Kubota K, Kosaka T, Ichikawa K (2009) Shotgun protein analysis by liquid chromatography-tandem mass spectrometry. Methods Mol Biol Clifton NJ 519:483–494. doi:10.1007/978–1-59745–281-6_32Google Scholar
  33. Lilley KS, Friedman DB (2004) All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics 1:401–409. doi:10.1586/14789450.1.4.401PubMedCrossRefGoogle Scholar
  34. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi:nature03702 [pii] 10.1038/nature03702PubMedCrossRefGoogle Scholar
  35. Mann M, Hojrup P, Roepstorff P (1993) Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom 22:338–345. doi:10.1002/bms.1200220605PubMedCrossRefGoogle Scholar
  36. Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473. doi:70/1/437 [pii] 10.1146/annurev.biochem.70.1.437PubMedCrossRefGoogle Scholar
  37. Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118:1590–1605. doi:10.1172/JCI34772PubMedCrossRefGoogle Scholar
  38. Mardis ER (2008a) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141CrossRefGoogle Scholar
  39. Mardis ER (2008b) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402. doi:10.1146/annurev.genom.9.081307.164359CrossRefGoogle Scholar
  40. Merchant M, Weinberger SR (2000) Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 21:1164–1177. doi:10.1002/(SICI)1522–2683(20000401)21:6 < 1164::AID-ELPS1164 > 3.0.CO;2–0 [pii] 10.1002/(SICI)1522–2683(20000401)21:6 < 1164::AID-ELPS1164 > 3.0.CO;2–0PubMedCrossRefGoogle Scholar
  41. Minden JS, Dowd SR, Meyer HE, Stuhler K (2009) Difference gel electrophoresis. Electrophoresis 30 (Suppl 1):S156–161. doi:10.1002/elps.200900098Google Scholar
  42. Monzon FA, Koen TJ (2010) Diagnosis of metastatic neoplasms: molecular approaches for identification of tissue of origin. Arch Pathol Lab Med 134:216–224PubMedGoogle Scholar
  43. Motoyama A, Yates JR 3rd (2008) Multidimensional LC separations in shotgun proteomics. Anal Chem 80:7187–7193, doi:10.1021/ac8013669PubMedCrossRefGoogle Scholar
  44. Ornstein DK et al (2004) Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml. J Urol 172:1302–1305. doi:00005392–200410000-00019 [pii]PubMedCrossRefGoogle Scholar
  45. Parikh AA, Johnson JC, Merchant NB (2008) Genomics and proteomics in predicting cancer outcomes. Surg Oncol Clin N Am 17:257–277 (vii)PubMedCrossRefGoogle Scholar
  46. Papadopoulos N, Kinzler KW, Vogelstein B (2006) The role of companion diagnostics in the development and use of mutation-targeted cancer therapies. Nat Biotechnol 24:985–995. doi:nbt1234 [pii] 10.1038/nbt1234PubMedCrossRefGoogle Scholar
  47. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752. doi:10.1038/35021093PubMedCrossRefGoogle Scholar
  48. Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA (2002a) Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov 1:683–695. doi:10.1038/nrd891 nrd891 [pii]CrossRefGoogle Scholar
  49. Petricoin EF 3rd et al (2002b) Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 94:1576–1578CrossRefGoogle Scholar
  50. Pleasance ED et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196. doi:nature08658 [pii] 10.1038/nature08658PubMedCrossRefGoogle Scholar
  51. Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nat Biotechnol 27:847–852PubMedCrossRefGoogle Scholar
  52. Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32 (Suppl):496–501, doi:10.1038/ng1032 ng1032 [pii]Google Scholar
  53. Quackenbush J (2006) Microarray analysis and tumor classification. N Engl J Med 354:2463–2472. doi:354/23/2463 [pii] 10.1056/NEJMra042342PubMedCrossRefGoogle Scholar
  54. Quackenbush J (2009) Data reporting standards: making the things we use better. Genome Med 1:111. doi:gm111 [pii] 10.1186/gm111Google Scholar
  55. Ramaswamy S et al (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A 98:15149–15154. doi:10.1073/pnas.211566398 211566398 [pii]PubMedCrossRefGoogle Scholar
  56. Ramaswamy S, Golub TR (2002) DNA microarrays in clinical oncology. J Clin Oncol 20:1932–1941PubMedGoogle Scholar
  57. Ramaswamy S, Perou CM (2003) DNA microarrays in breast cancer: the promise of personalised medicine. Lancet 361:1576–1577. doi:S0140–6736(03)13322–3 [pii] 10.1016/S0140–6736(03)13322–3PubMedCrossRefGoogle Scholar
  58. Roboz J (2005) Mass spectrometry in diagnostic oncoproteomics. Cancer Invest 23:465–478PubMedCrossRefGoogle Scholar
  59. Rosenblatt KP et al (2004) Serum proteomics in cancer diagnosis and management. Annu Rev Med 55:97–112PubMedCrossRefGoogle Scholar
  60. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470PubMedCrossRefGoogle Scholar
  61. Shi L et al (2006) The Microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161PubMedCrossRefGoogle Scholar
  62. Simpkins F, Czechowicz JA, Liotta L, Kohn EC (2005) SELDI-TOF mass spectrometry for cancer biomarker discovery and serum proteomic diagnostics. Pharmacogenomics 6:647–653. doi:10.2217/14622416.6.6.647PubMedCrossRefGoogle Scholar
  63. Sorlie T et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423. doi:10.1073/pnas.09326921000932692100 [pii]PubMedCrossRefGoogle Scholar
  64. Spellman PT et al (2002) Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol 3:Research0046Google Scholar
  65. Stratton M (2008) Genome resequencing and genetic variation. Nat Biotechnol 26:65–66. doi:nbt0108–65 [pii] 10.1038/nbt0108–65PubMedCrossRefGoogle Scholar
  66. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724. doi:nature07943 [pii] 10.1038/nature07943PubMedCrossRefGoogle Scholar
  67. Sugimura H et al (2010) Fluorescence in situ hybridization analysis with a tissue microarray: ‘FISH and chips’ analysis of pathology archives. Pathol Int 60:543–550. doi:PIN2561 [pii] 10.1111/j.1440–1827.2010.02561.xPubMedCrossRefGoogle Scholar
  68. Tanas MR, Goldblum JR (2009) Fluorescence in situ hybridization in the diagnosis of soft tissue neoplasms: a review. Adv Anat Pathol 16:383–391. doi:10.1097/PAP.0b013e3181bb6b86 00125480–200911000-00002 [pii]PubMedCrossRefGoogle Scholar
  69. Tothill RW et al (2005) An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin. Cancer Res 65:4031–4040PubMedCrossRefGoogle Scholar
  70. Turnbull C et al (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42:504–507. doi:ng.586 [pii] 10.1038/ng.586PubMedCrossRefGoogle Scholar
  71. Van Prooijen-Knegt AC et al (1982) In situ hybridization of DNA sequences in human metaphase chromosomes visualized by an indirect fluorescent immunocytochemical procedure. Exp Cell Res 141:397–407PubMedCrossRefGoogle Scholar
  72. Volpi EV, Bridger JM (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 45:385–386, 388, 390 passim. doi:000112811 [pii] 10.2144/000112811PubMedCrossRefGoogle Scholar
  73. Waddell N et al (2010) Gene expression profiling of formalin-fixed, paraffin-embedded familial breast tumours using the whole genome-DASL assay. J Pathol 221:452–461. doi:10.1002/path.2728PubMedGoogle Scholar
  74. Wang X et al (2005) Autoantibody signatures in prostate cancer. N Engl J Med 353:1224–1235. doi:353/12/1224 [pii] 10.1056/NEJMoa051931PubMedCrossRefGoogle Scholar
  75. Weksberg R et al (2005) A method for accurate detection of genomic microdeletions using real-time quantitative PCR. BMC Genomics 6:180. doi:1471–2164-6–180 [pii] 10.1186/1471–2164-6–180PubMedCrossRefGoogle Scholar
  76. Wong SC et al (2009) Advanced proteomic technologies for cancer biomarker discovery. Expert Rev Proteomics 6:123–134. doi:10.1586/epr.09.1PubMedCrossRefGoogle Scholar
  77. Yates JR 3rd, Speicher S, Griffin PR, Hunkapiller T (1993) Peptide mass maps: a highly informative approach to protein identification. Anal Biochem 214:397–408. doi:S0003–2697(83)71514–9 [pii] 10.1006/abio.1993.1514PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pathology, Henry C Witelson Ocular Pathology Laboratory and Department of DermatologyMcGill UniversityMontrealCanada

Personalised recommendations