Skip to main content

p53 Models for Mammary Carcinogenesis

  • Chapter
  • First Online:
p53 in the Clinics

Abstract

Understanding the molecular pathways leading to breast cancer development and progression is difficult from retrospective analyses of human breast tumors. In particular, the influence of specific individual molecular factors on tumor development and progression, as well as on treatment outcome and prognosis, are difficult to assess. The topic of this review is the role of p53 in mammary carcinogenesis as deduced from model systems. Due to the heterogeneity of this disease, model systems are extremely useful to narrow down this complexity. We will first summarize the various types of model systems that have been established for the analysis of mammary carcinogenesis, in general, and then focus on mouse models which have analyzed the role of p53 in this process, and, at the end, describe practical applications of such mouse models for answering questions of clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari AS, Iwakuma T (2009) Mutant p53 gain of oncogenic function: in vivo evidence, mechanism of action and its clinical implications. Fukuoka Igaku Zasshi 100:217–228

    PubMed  CAS  Google Scholar 

  • Birch JM, Alston RD, McNally RJ, Evans DG, Kelsey AM, Harris M, Eden OB, Varley JM (2001) Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene 20:4621–4628

    Article  PubMed  CAS  Google Scholar 

  • Blackburn AC, Brown JS, Naber SP, Otis CN, Wood JT, Jerry DJ (2003) BALB/c alleles for Prkdc and Cdkn2a interact to modify tumor susceptibility in Trp53+/− mice. Cancer Res 63:2364–2368

    PubMed  CAS  Google Scholar 

  • Blackburn AC, Jerry DJ (2002) Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer? Breast Cancer Res 4:101–111

    Article  PubMed  CAS  Google Scholar 

  • Blackburn AC, McLary SC, Naeem R, Luszcz J, Stockton DW, Donehower LA, Mohammed M, Mailhes JB, Soferr T, Naber SP et al (2004) Loss of heterozygosity occurs via mitotic recombination in Trp53+/− mice and associates with mammary tumor susceptibility of the BALB/c strain. Cancer Res 64:5140–5147

    Article  PubMed  CAS  Google Scholar 

  • Blandino G, Levine AJ, Oren M (1999) Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477–485

    Article  PubMed  CAS  Google Scholar 

  • Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713

    PubMed  CAS  Google Scholar 

  • Cheung AM, Elia A, Tsao MS, Done S, Wagner KU, Hennighausen L, Hakem R, Mak TW (2004) Brca2 deficiency does not impair mammary epithelium development but promotes mammary adenocarcinoma formation in p53(+/−) mutant mice. Cancer Res 64:1959–1965

    Article  PubMed  CAS  Google Scholar 

  • Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B, Brisken C, Minucci S, Di Fiore PP, Pelicci PG (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138:1083–1095

    Article  PubMed  CAS  Google Scholar 

  • Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, van Beijnum JR, Griffioen AW, Vink J, Krimpenfort P et al (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10:437–449

    Article  PubMed  CAS  Google Scholar 

  • Dimri G, Band H, Band V (2005) Mammary epithelial cell transformation: insights from cell culture and mouse models. Breast Cancer Res 7:171–179

    Article  PubMed  CAS  Google Scholar 

  • Donehower LA, Godley LA, Aldaz CM, Pyle R, Shi YP, Pinkel D, Gray J, Bradley A, Medina D, Varmus HE (1995a) Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev 9:882–895

    Article  PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    Article  PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Vogel H, McArthur MJ, Montgomery CA Jr, Park SH, Thompson T, Ford RJ, Bradley A (1995b) Effects of genetic background on tumorigenesis in p53-deficient mice. Mol Carcinog 14:16–22

    Article  PubMed  CAS  Google Scholar 

  • Donehower LA, Lozano G (2009) 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 9:831–841

    Article  PubMed  CAS  Google Scholar 

  • Green JE, Shibata MA, Yoshidome K, Liu ML, Jorcyk C, Anver MR, Wigginton J, Wiltrout R, Shibata E, Kaczmarczyk S et al (2000) The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19:1020–1027

    Article  PubMed  CAS  Google Scholar 

  • Hadsell DL, Murphy KL, Bonnette SG, Reece N, Laucirica R, Rosen JM (2000) Cooperative interaction between mutant p53 and des(1–3)IGF-I accelerates mammary tumorigenesis. Oncogene 19:889–898

    Article  PubMed  CAS  Google Scholar 

  • Heinlein C, Krepulat F, Lohler J, Speidel D, Deppert W, Tolstonog GV (2008) Mutant p53(R270H) gain of function phenotype in a mouse model for oncogene-induced mammary carcinogenesis. Int J Cancer 122:1701–1709

    Article  PubMed  CAS  Google Scholar 

  • Herschkowitz JI, He X, Fan C, Perou CM (2008) The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res 10:R75

    Article  PubMed  Google Scholar 

  • Humphreys RC, Krajewska M, Krnacik S, Jaeger R, Weiher H, Krajewski S, Reed JC, Rosen JM (1996) Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal morphogenesis. Development 122:4013–4022

    PubMed  CAS  Google Scholar 

  • Hundley JE, Koester SK, Troyer DA, Hilsenbeck SG, Subler MA, Windle JJ (1997) Increased tumor proliferation and genomic instability without decreased apoptosis in MMTV-ras mice deficient in p53. Mol Cell Biol 17:723–731

    PubMed  CAS  Google Scholar 

  • Husler MR, Kotopoulis KA, Sundberg JP, Tennent BJ, Kunig SV, Knowles BB (1998) Lactation-induced WAP-SV40 Tag transgene expression in C57BL/6J mice leads to mammary carcinoma. Transgenic Res 7:253–263

    Article  PubMed  CAS  Google Scholar 

  • Jannasch K, Dullin C, Heinlein C, Krepulat F, Wegwitz F, Deppert W, Alves F (2009) Detection of different tumor growth kinetics in single transgenic mice with oncogene-induced mammary carcinomas by flat-panel volume computed tomography. Int J Cancer 125:62–70

    Article  PubMed  CAS  Google Scholar 

  • Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ, Butel JS, Medina D (2000) A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene 19:1052–1058

    Article  PubMed  CAS  Google Scholar 

  • Jerry DJ, Kuperwasser C, Downing SR, Pinkas J, He C, Dickinson E, Marconi S, Naber SP (1998) Delayed involution of the mammary epithelium in BALB/c-p53null mice. Oncogene 17:2305–2312

    Article  PubMed  CAS  Google Scholar 

  • Johansson EM, Kannius-Janson M, Bjursell G, Nilsson J (2003) The p53 tumor suppressor gene is regulated in vivo by nuclear factor 1-C2 in the mouse mammary gland during pregnancy. Oncogene 22:6061–6070

    Article  PubMed  CAS  Google Scholar 

  • Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29:418–425

    Article  PubMed  CAS  Google Scholar 

  • Keller PJ, Lin AF, Arendt LM, Klebba I, Jones AD, Rudnick JA, Dimeo TA, Gilmore H, Jefferson DM, Graham RA et al (2010) Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Res 12:R87

    Article  PubMed  Google Scholar 

  • Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337

    Article  PubMed  CAS  Google Scholar 

  • Krepulat F, Lohler J, Heinlein C, Hermannstadter A, Tolstonog GV, Deppert W (2005) Epigenetic mechanisms affect mutant p53 transgene expression in WAP-mutp53 transgenic mice. Oncogene 24:4645–4659

    Article  PubMed  CAS  Google Scholar 

  • Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D, Naber SP, Jerry DJ (2000a) Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol 157:2151–2159

    Article  PubMed  CAS  Google Scholar 

  • Kuperwasser C, Pinkas J, Hurlbut GD, Naber SP, Jerry DJ (2000b) Cytoplasmic sequestration and functional repression of p53 in the mammary epithelium is reversed by hormonal treatment. Cancer Res 60:2723–2729

    PubMed  CAS  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC et al (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119:861–872

    Article  PubMed  CAS  Google Scholar 

  • Langerod A, Zhao H, Borgan O, Nesland JM, Bukholm IR, Ikdahl T, Karesen R, Borresen-Dale AL, Jeffrey SS (2007) TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 9:R30

    Article  PubMed  Google Scholar 

  • Li B, Murphy KL, Laucirica R, Kittrell F, Medina D, Rosen JM (1998) A transgenic mouse model for mammary carcinogenesis. Oncogene 16:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Li B, Rosen JM, McMenamin-Balano J, Muller WJ, Perkins AS (1997) neu/ERBB2 cooperates with p53-172H during mammary tumorigenesis in transgenic mice. Mol Cell Biol 17:3155–3163

    PubMed  CAS  Google Scholar 

  • Lin SC, Lee KF, Nikitin AY, Hilsenbeck SG, Cardiff RD, Li A, Kang KW, Frank SA, Lee WH, Lee EY (2004) Somatic mutation of p53 leads to estrogen receptor alpha-positive and -negative mouse mammary tumors with high frequency of metastasis. Cancer Res 64:3525–3532

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A, Kerkhoven RM, van Vliet MH, Wessels LF, Peterse JL et al (2007) Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci USA 104:12111–12116

    Article  PubMed  CAS  Google Scholar 

  • Lozano G (2007) The oncogenic roles of p53 mutants in mouse models. Curr Opin Genet Dev 17:66–70

    Article  PubMed  CAS  Google Scholar 

  • Lozano G (2010) Mouse models of p53 functions. Cold Spring Harb Perspect Biol 2:a001115

    Article  PubMed  Google Scholar 

  • Manie E, Vincent-Salomon A, Lehmann-Che J, Pierron G, Turpin E, Warcoin M, Gruel N, Lebigot I, Sastre-Garau X, Lidereau R et al (2009) High frequency of TP53 mutation in BRCA1 and sporadic basal-like carcinomas but not in BRCA1 luminal breast tumors. Cancer Res 69:663–671

    Article  PubMed  CAS  Google Scholar 

  • Matthews JR, Clarke AR (2005) p53 mediates a default programme of mammary gland involution in the absence of STAT3. Oncogene 24:3083–3090

    Article  PubMed  CAS  Google Scholar 

  • McCormack SJ, Weaver Z, Deming S, Natarajan G, Torri J, Johnson MD, Liyanage M, Ried T, Dickson RB (1998) Myc/p53 interactions in transgenic mouse mammary development, tumorigenesis and chromosomal instability. Oncogene 16:2755–2766

    Article  PubMed  CAS  Google Scholar 

  • Medina D, Kittrell F, Hill J, Zhang Y, Hilsenbeck SG, Bissonette R, Brown PH (2009) Prevention of tumorigenesis in p53-null mammary epithelium by rexinoid bexarotene, tyrosine kinase inhibitor gefitinib, and celecoxib. Cancer Prev Res (Phila Pa) 2:168–174

    Article  CAS  Google Scholar 

  • Medina D, Kittrell FS (2003) p53 function is required for hormone-mediated protection of mouse mammary tumorigenesis. Cancer Res 63:6140–6143

    PubMed  CAS  Google Scholar 

  • Milliken EL, Lozada KL, Johnson E, Landis MD, Seachrist DD, Whitten I, Sutton AL, Abdul-Karim FW, Keri RA (2008) Ovarian hyperstimulation induces centrosome amplification and aneuploid mammary tumors independently of alterations in p53 in a transgenic mouse model of breast cancer. Oncogene 27:1759–1766

    Article  PubMed  CAS  Google Scholar 

  • Molchadsky A, Rivlin N, Brosh R, Rotter V, Sarig R (2010) p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 31:1501–1508

    Article  PubMed  CAS  Google Scholar 

  • Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860

    Article  PubMed  CAS  Google Scholar 

  • Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008

    Article  PubMed  Google Scholar 

  • Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J, Theillet C, Rodriguez C, Lidereau R, Bieche I et al (2006) The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12:1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Oren M, Rotter V (2010) Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2:a001107

    Article  PubMed  Google Scholar 

  • Pajic M, Kersbergen A, van Diepen F, Pfauth A, Jonkers J, Borst P, Rottenberg S (2010) Tumor-initiating cells are not enriched in cisplatin-surviving BRCA1;p53-deficient mammary tumor cells in vivo. Cell Cycle 9:3780–3791

    Article  PubMed  CAS  Google Scholar 

  • Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28:622–629

    Article  PubMed  CAS  Google Scholar 

  • Pipas JM (2009) SV40: cell transformation and tumorigenesis. Virology 384:294–303

    Article  PubMed  CAS  Google Scholar 

  • Proia DA, Kuperwasser C (2006) Reconstruction of human mammary tissues in a mouse model. Nat Protoc 1:206–214

    Article  PubMed  CAS  Google Scholar 

  • Robinson GW, McKnight RA, Smith GH, Hennighausen L (1995) Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121:2079–2090

    PubMed  CAS  Google Scholar 

  • Santarelli R, Tzeng YJ, Zimmermann C, Guhl E, Graessmann A (1996) SV40 T-antigen induces breast cancer formation with a high efficiency in lactating and virgin WAP-SV-T transgenic animals but with a low efficiency in ovariectomized animals. Oncogene 12:495–505

    PubMed  CAS  Google Scholar 

  • Sarig R, Rivlin N, Brosh R, Bornstein C, Kamer I, Ezra O, Molchadsky A, Goldfinger N, Brenner O, Rotter V (2010) Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med 207:2127–2140

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Garg C, Lohler J, Gocht A, Deppert W (2000) A transgenic mouse model for the ductal carcinoma in situ (DCIS) of the mammary gland. Oncogene 19:1028–1037

    Article  PubMed  CAS  Google Scholar 

  • Shafee N, Smith CR, Wei S, Kim Y, Mills GB, Hortobagyi GN, Stanbridge EJ, Lee EY (2008) Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res 68:3243–3250

    Article  PubMed  CAS  Google Scholar 

  • Shai A, Pitot HC, Lambert PF (2008) p53 Loss synergizes with estrogen and papillomaviral ­oncogenes to induce cervical and breast cancers. Cancer Res 68:2622–2631

    Article  PubMed  CAS  Google Scholar 

  • Tao L, Roberts AL, Dunphy KA, Bigelow C, Yan H, Jerry DJ (2011) Repression of mammary stem/progenitor cells by p53 is mediated by notch and separable from apoptotic activity. Stem Cells 29:119–127

    Article  PubMed  CAS  Google Scholar 

  • Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA, Van Pelt CS, Lozano G (2008) The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 22:1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150

    Article  PubMed  CAS  Google Scholar 

  • Umesako S, Fujisawa K, Iiga S, Mori N, Takahashi M, Hong DP, Song CW, Haga S, Imai S, Niwa O et al (2005) Atm heterozygous deficiency enhances development of mammary carcinomas in p53 heterozygous knockout mice. Breast Cancer Res 7:R164–R170

    Article  PubMed  CAS  Google Scholar 

  • Visvader JE (2009) Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23:2563–2577

    Article  PubMed  CAS  Google Scholar 

  • Wegwitz F, Kluth MA, Manz C, Otto B, Gruner K, Heinlein C, Kuhl M, Warnecke G, Schumacher U, Deppert W et al (2010) Tumorigenic WAP-T mouse mammary carcinoma cells: a model for a self-reproducing homeostatic cancer cell system. PLoS One 5:e12103

    Article  PubMed  Google Scholar 

  • Weigelt B, Bissell MJ (2008) Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 18:311–321

    Article  PubMed  CAS  Google Scholar 

  • Weigelt B, Reis-Filho JS (2009) Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 6:718–730

    Article  PubMed  CAS  Google Scholar 

  • Wijnhoven SW, Zwart E, Speksnijder EN, Beems RB, Olive KP, Tuveson DA, Jonkers J, Schaap MM, van den Berg J, Jacks T et al (2005) Mice expressing a mammary gland-specific R270H mutation in the p53 tumor suppressor gene mimic human breast cancer development. Cancer Res 65:8166–8173

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Jung L, Cooper AB, Fleet C, Chen L, Breault L, Clark K, Cai Z, Vincent S, Bottega S et al (2009) Dissecting genetic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice. Proc Natl Acad Sci USA 106:7022–7027

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA, Harris CC, Deng CX (2001) Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 28:266–271

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T, Hennighausen L, Wynshaw-Boris A, Deng CX (1999) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 22:37–43

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Blackburn AC, McLary SC, Tao L, Roberts AL, Xavier EA, Dickinson ES, Seo JH, Arenas RB, Otis CN et al (2010) Pathways contributing to development of spontaneous mammary tumors in BALB/c-Trp53+/− mice. Am J Pathol 176:1421–1432

    Article  PubMed  CAS  Google Scholar 

  • Zander SA, Kersbergen A, van der Burg E, de Water N, van Tellingen O, Gunnarsdottir S, Jaspers JE, Pajic M, Nygren AO, Jonkers J et al (2010) Sensitivity and acquired resistance of BRCA1;p53-deficient mouse mammary tumors to the topoisomerase I inhibitor topotecan. Cancer Res 70:1700–1710

    Article  PubMed  CAS  Google Scholar 

  • Zelazny E, Li B, Anagnostopoulos AM, Coleman A, Perkins AS (2001) Cooperating oncogenic events in murine mammary tumorigenesis: assessment of ErbB2, mutant p53, and mouse mammary tumor virus. Exp Mol Pathol 70:183–193

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Xu Y (2010) p53 and stem cells: new developments and new concerns. Trends Cell Biol 20:170–175

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Deppert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deppert, W., Tolstonog, G. (2013). p53 Models for Mammary Carcinogenesis. In: Hainaut, P., Olivier, M., Wiman, K. (eds) p53 in the Clinics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3676-8_7

Download citation

Publish with us

Policies and ethics