Skip to main content

TP53: Coordinator of the Processes That Underlie the Hallmarks of Cancer

  • Chapter
  • First Online:
p53 in the Clinics

Abstract

In 2000, Hanahan and Weinberg proposed that the remarkable diversity of neoplastic diseases and of their underlying molecular mechanisms could be rationalized into six biological processes that, together, constitute the molecular and cellular infrastructure of cancer, thus identifying the “Hallmarks of Cancer” (Hanahan and Weinberg, Cell 100: 57–70, 2000). To the six initial Hallmark processes (sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis), advances in the past decade have added four biological processes, including genome instability, tumor-promoting inflammation, reprogramming of cell bioenergetics, and evading immune destruction. Far from constituting independent biological programs, the Hallmark processes are redundant and deeply interconnected. The p53 protein, encoded by the TP53 tumor suppressor gene, has an exceptionally diverse range of biological functions that endows it with the capability to contribute to each of the ten Hallmark processes. In this overview, I illustrate how p53 may participate in each of these processes and I propose that its unique tumor suppressive properties stem from its capacity to coordinate them into a coherent set of responses. This point of view supports the idea that combining p53-targeted intervention with drugs targeting specific Hallmark capabilities may provide a principle for a form of next-generation adjuvant therapy enhancing and extending the clinical benefits of emerging new anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn BY, Trinh DL, Zajchowski LD, Lee B, Elwi AN, Kim SW (2010) Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer. Oncogene 29:1155–1166

    PubMed  CAS  Google Scholar 

  • Allocati N, Di Ilio C, De Laurenzi V (2012) p63/p73 in the control of cell cycle and cell death. Exp Cell Res 318:1285–1290. PMID: 22326462

    Google Scholar 

  • Ambs S, Ogunfusika MO, Merriam WG, Bennett WP, Billiar TR, Harris CC (1998) Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice. Proc Natl Acad Sci USA 95:8823–8828

    PubMed  CAS  Google Scholar 

  • Ambs S, Bennett WP, Merriam WG, Ogunfusika MO, Oser SM, Harrington AM, Shields PG, Felley-Bosco E, Hussain SP, Harris CC (1999) Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J Natl Cancer Inst 91:86–88

    PubMed  CAS  Google Scholar 

  • Amzallag N, Passer BJ, Allanic D, Segura E, Thery C, Goud B, Amson R, Telerman A (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279:46104–46112

    PubMed  CAS  Google Scholar 

  • Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, Fauvet F, Puisieux I, Doglioni C, Piccinin S, Maestro R, Voeltzel T, Selmi A, Valsesia-Wittmann S, Caron de Fromentel C, Puisieux A (2008) Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14:79–89

    PubMed  CAS  Google Scholar 

  • Assadian S, El-Assaad W, Wang XQ, Gannon PO, Barres V, Latour M, Mes-Masson AM, Saad F, Sado Y, Dostie J, Teodoro JG (2012) p53 inhibits angiogenesis by inducing the production of Arresten. Cancer Res 72(5):1270–1279

    PubMed  CAS  Google Scholar 

  • Aylon Y, Oren M (2011) New plays in the p53 theater. Curr Opin Genet Dev 21:86–92

    PubMed  CAS  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    PubMed  CAS  Google Scholar 

  • Brabletz T (2012) MiR-34 and SNAIL: another double-negative feedback loop controlling cellular plasticity/EMT governed by p53. Cell Cycle 11:215

    PubMed  CAS  Google Scholar 

  • Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, Kley N (1995) Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377:646–649

    PubMed  CAS  Google Scholar 

  • Butt AJ, Firth SM, Baxter RC (1999) The IGF axis and programmed cell death. Immunol Cell Biol 77:256–262

    PubMed  CAS  Google Scholar 

  • Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, Liu M, Chen CT, Yu D, Hung MC (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13:317–323

    PubMed  CAS  Google Scholar 

  • Chatterjee A, Mambo E, Osada M, Upadhyay S, Sidransky D (2006) The effect of p53-RNAi and p53 knockout on human 8-oxoguanine DNA glycosylase (hOgg1) activity. FASEB J 20:112–114

    PubMed  CAS  Google Scholar 

  • Choi KS, Bae MK, Jeong JW, Moon HE, Kim KW (2003) Hypoxia-induced angiogenesis during carcinogenesis. J Biochem Mol Biol 36:120–127

    PubMed  CAS  Google Scholar 

  • Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126:121–134

    PubMed  CAS  Google Scholar 

  • Crighton D, Wilkinson S, Ryan KM (2007) DRAM links autophagy to p53 and programmed cell death. Autophagy 3:72–74

    PubMed  CAS  Google Scholar 

  • Curto M, McClatchey AI (2008) Nf2/Merlin: a coordinator of receptor signalling and intercellular contact. Br J Cancer 98:256–262

    PubMed  CAS  Google Scholar 

  • de Moraes E, Dar NA, de Moura Gallo CV, Hainaut P (2007) Cross-talks between cyclooxygenase-2 and tumor suppressor protein p53: balancing life and death during inflammatory stress and carcinogenesis. Int J Cancer 121:929–937

    PubMed  Google Scholar 

  • Dominguez-Brauer C, Brauer PM, Chen YJ, Pimkina J, Raychaudhuri P (2010) Tumor suppression by ARF: gatekeeper and caretaker. Cell Cycle 9:86–89

    PubMed  CAS  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    PubMed  CAS  Google Scholar 

  • Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M (1989) Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 86:8763–8767

    PubMed  CAS  Google Scholar 

  • Eng CH, Abraham RT (2011) The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming. Oncogene 30:4687–4696

    PubMed  CAS  Google Scholar 

  • Feng Z (2010) p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol 2:a001057

    PubMed  Google Scholar 

  • Flores I, Blasco MA (2009) A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres. PLoS One 4:e4934

    PubMed  Google Scholar 

  • Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, Felley-Bosco E, Wang XW, Geller DA, Tzeng E, Billiar TR, Harris CC (1996) Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 93:2442–2447

    PubMed  CAS  Google Scholar 

  • Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R, Barsotti A, Chicas A, Li W, Polotskaia A, Bissell MJ, Osborne TF, Tian B, Lowe SW, Silva JM, Borresen-Dale AL, Levine AJ, Bargonetti J, Prives C (2012) Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148:244–258

    PubMed  CAS  Google Scholar 

  • Galluzzi L, Morselli E, Kepp O, Maiuri MC, Kroemer G (2010) Defective autophagy control by the p53 rheostat in cancer. Cell Cycle 9:250–255

    PubMed  CAS  Google Scholar 

  • Gatz SA, Wiesmuller L (2006) p53 in recombination and repair. Cell Death Differ 13:1003–1016

    PubMed  CAS  Google Scholar 

  • Gottlieb E, Vousden KH (2010) p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol 2:a001040

    PubMed  Google Scholar 

  • Grombacher T, Eichhorn U, Kaina B (1998) p53 is involved in regulation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) by DNA damaging agents. Oncogene 17:845–851

    PubMed  CAS  Google Scholar 

  • Hafsi H, Hainaut P (2011) Redox control and interplay between p53 isoforms: roles in the regulation of basal p53 levels, cell fate, and senescence. Antioxid Redox Signal 15:1655–1667

    PubMed  CAS  Google Scholar 

  • Hainaut P, Wiman KG (2009) 30 years and a long way into p53 research. Lancet Oncol 10:913–919

    PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  • Heinemann A, Zhao F, Pechlivanis S, Eberle J, Steinle A, Diederichs S, Schadendorf D, Paschen A (2012) Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res 72:460–471

    PubMed  CAS  Google Scholar 

  • Herzer K, Falk CS, Encke J, Eichhorst ST, Ulsenheimer A, Seliger B, Krammer PH (2003) Upregulation of major histocompatibility complex class I on liver cells by hepatitis C virus core protein via p53 and TAP1 impairs natural killer cell cytotoxicity. J Virol 77:8299–8309

    PubMed  CAS  Google Scholar 

  • Hill KA, Buettner VL, Heidt A, Chen LL, Li W, Gonzalez KD, Wang JC, Scaringe WA, Sommer SS (2006) Most spontaneous tumors in a mouse model of Li-Fraumeni syndrome do not have a mutator phenotype. Carcinogenesis 27:1860–1866

    PubMed  CAS  Google Scholar 

  • Hollstein M, Hainaut P (2010) Massively regulated genes: the example of TP53. J Pathol 220:164–173

    PubMed  CAS  Google Scholar 

  • Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 107:7455–7460

    PubMed  CAS  Google Scholar 

  • Huang S, Liu LN, Hosoi H, Dilling MB, Shikata T, Houghton PJ (2001) p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res 61:3373–3381

    PubMed  CAS  Google Scholar 

  • Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316

    PubMed  CAS  Google Scholar 

  • Jing Y, Han Z, Zhang S, Liu Y, Wei L (2011) Epithelial-Mesenchymal Transition in tumor microenvironment. Cell Biosci 1:29

    PubMed  CAS  Google Scholar 

  • Kamp DW, Shacter E, Weitzman SA (2011) Chronic inflammation and cancer: the role of the mitochondria. Oncology (Williston Park) 25(5):400–410, 413

    Google Scholar 

  • Kanaya T, Kyo S, Hamada K, Takakura M, Kitagawa Y, Harada H, Inoue M (2000) Adenoviral expression of p53 represses telomerase activity through down-regulation of human telomerase reverse transcriptase transcription. Clin Cancer Res 6:1239–1247

    PubMed  CAS  Google Scholar 

  • Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10:611–618

    PubMed  CAS  Google Scholar 

  • Khromova NV, Kopnin PB, Stepanova EV, Agapova LS, Kopnin BP (2009) p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Lett 276:143–151

    PubMed  CAS  Google Scholar 

  • Kim H, Kwak NJ, Lee JY, Choi BH, Lim Y, Ko YJ, Kim YH, Huh PW, Lee KH, Rha HK, Wang YP (2004) Merlin neutralizes the inhibitory effect of Mdm2 on p53. J Biol Chem 279:7812–7818

    PubMed  CAS  Google Scholar 

  • Kogan-Sakin I, Tabach Y, Buganim Y, Molchadsky A, Solomon H, Madar S, Kamer I, Stambolsky P, Shelly A, Goldfinger N, Valsesia-Wittmann S, Puisieux A, Zundelevich A, Gal-Yam EN, Avivi C, Barshack I, Brait M, Sidransky D, Domany E, Rotter V (2011) Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ 18:271–281

    PubMed  CAS  Google Scholar 

  • Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65:177–185

    PubMed  CAS  Google Scholar 

  • Lamouille S, Derynck R (2009) Oncogene and tumour suppressor: the two faces of SnoN. EMBO J 28:3459–3460

    PubMed  CAS  Google Scholar 

  • Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    PubMed  CAS  Google Scholar 

  • Lane D, Levine A (2010) p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2:a000893

    PubMed  CAS  Google Scholar 

  • Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G, Marine JC, Vidal M, Amson R, Telerman A (2008) Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ 15:1723–1733

    PubMed  CAS  Google Scholar 

  • Levine AJ, Finlay CA, Hinds PW (2004) P53 is a tumor suppressor gene. Cell 116:S67–S69, 1 p following S69

    PubMed  CAS  Google Scholar 

  • Li Z, Musich PR, Zou Y (2011a) Differential DNA damage responses in p53 proficient and deficient cells: cisplatin-induced nuclear import of XPA is independent of ATR checkpoint in p53-deficient lung cancer cells. Int J Biochem Mol Biol 2:138–145

    PubMed  Google Scholar 

  • Li Z, Musich PR, Serrano MA, Dong Z, Zou Y (2011b) XPA-mediated regulation of global nucleotide excision repair by ATR Is p53-dependent and occurs primarily in S-phase. PLoS One 6:e28326

    PubMed  CAS  Google Scholar 

  • Liang X, Wang P, Gao Q, Xiang T, Tao X (2010) Endogenous LKB1 knockdown accelerates G(1)/S transition through p53 and p16 pathways. Cancer Biol Ther 9:156–160

    PubMed  CAS  Google Scholar 

  • Liu G, Park YJ, Tsuruta Y, Lorne E, Abraham E (2009) p53 Attenuates lipopolysaccharide-induced NF-kappaB activation and acute lung injury. J Immunol 182:5063–5071

    PubMed  CAS  Google Scholar 

  • Lomazzi M, Moroni MC, Jensen MR, Frittoli E, Helin K (2002) Suppression of the p53- or pRB-mediated G1 checkpoint is required for E2F-induced S-phase entry. Nat Genet 31: 190–194

    PubMed  CAS  Google Scholar 

  • Lu X, Bocangel D, Nannenga B, Yamaguchi H, Appella E, Donehower LA (2004a) The p53-induced oncogenic phosphatase PPM1D interacts with uracil DNA glycosylase and suppresses base excision repair. Mol Cell 15:621–634

    PubMed  CAS  Google Scholar 

  • Lu X, Nguyen TA, Appella E, Donehower LA (2004b) Homeostatic regulation of base excision repair by a p53-induced phosphatase: linking stress response pathways with DNA repair proteins. Cell Cycle 3:1363–1366

    PubMed  CAS  Google Scholar 

  • Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL, Carnuccio R, Kroemer G (2009) Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 8:1571–1576

    PubMed  CAS  Google Scholar 

  • Malkin D, Li FP, Strong LC, Fraumeni JFJ, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    PubMed  CAS  Google Scholar 

  • Marcel V, Dichtel-Danjoy ML, Sagne C, Hafsi H, Ma D, Ortiz-Cuaran S, Olivier M, Hall J, Mollereau B, Hainaut P, Bourdon JC (2011) Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ 18:1815–1824

    PubMed  CAS  Google Scholar 

  • Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127:1323–1334

    PubMed  CAS  Google Scholar 

  • Matthew EM, Hart LS, Astrinidis A, Navaraj A, Dolloff NG, Dicker DT, Henske EP, El-Deiry WS (2009) The p53 target Plk2 interacts with TSC proteins impacting mTOR signaling, tumor growth and chemosensitivity under hypoxic conditions. Cell Cycle 8:4168–4175

    PubMed  CAS  Google Scholar 

  • Melino G, Lu X, Gasco M, Crook T, Knight RA (2003) Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci 28:663–670

    PubMed  CAS  Google Scholar 

  • Menendez D, Shatz M, Azzam K, Garantziotis S, Fessler MB, Resnick MA (2011) The Toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genet 7:e1001360

    PubMed  CAS  Google Scholar 

  • Moffitt KL, Martin SL, Walker B (2010) From sentencing to execution – the processes of apoptosis. J Pharm Pharmacol 62:547–562

    PubMed  CAS  Google Scholar 

  • Munoz-Fontela C, Pazos M, Delgado I, Murk W, Mungamuri SK, Lee SW, Garcia-Sastre A, Moran TM, Aaronson SA (2011) p53 serves as a host antiviral factor that enhances innate and adaptive immune responses to influenza A virus. J Immunol 187:6428–6436

    PubMed  CAS  Google Scholar 

  • Nekulova M, Holcakova J, Coates P, Vojtesek B (2011) The role of p63 in cancer, stem cells and cancer stem cells. Cell Mol Biol Lett 16:296–327

    PubMed  CAS  Google Scholar 

  • Offer H, Milyavsky M, Erez N, Matas D, Zurer I, Harris CC, Rotter V (2001) Structural and functional involvement of p53 in BER in vitro and in vivo. Oncogene 20:581–589

    PubMed  CAS  Google Scholar 

  • Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442

    PubMed  CAS  Google Scholar 

  • Palmero EI, Achatz MI, Ashton-Prolla P, Olivier M, Hainaut P (2010) Tumor protein 53 mutations and inherited cancer: beyond Li-Fraumeni syndrome. Curr Opin Oncol 22:64–69

    PubMed  CAS  Google Scholar 

  • Park JY, Wang PY, Matsumoto T, Sung HJ, Ma W, Choi JW, Anderson SA, Leary SC, Balaban RS, Kang JG, Hwang PM (2009) p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ Res 105:705–712, 11 p following 712

    PubMed  CAS  Google Scholar 

  • Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21:139–146

    PubMed  CAS  Google Scholar 

  • Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165

    PubMed  CAS  Google Scholar 

  • Pfeifer GP, Hainaut P (2011) Next-generation sequencing: emerging lessons on the origins of human cancer. Curr Opin Oncol 23:62–68

    PubMed  Google Scholar 

  • Ryan KM, Ernst MK, Rice NR, Vousden KH (2000) Role of NF-kappaB in p53-mediated programmed cell death. Nature 404:892–897

    PubMed  CAS  Google Scholar 

  • Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464:520–528

    PubMed  CAS  Google Scholar 

  • Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–365

    PubMed  CAS  Google Scholar 

  • Sarig R, Rivlin N, Brosh R, Bornstein C, Kamer I, Ezra O, Molchadsky A, Goldfinger N, Brenner O, Rotter V (2010) Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med 207:2127–2140

    PubMed  CAS  Google Scholar 

  • Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004) The tumor suppressor p53 down-­regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64:2627–2633

    PubMed  CAS  Google Scholar 

  • Seemann S, Hainaut P (2005) Roles of thioredoxin reductase 1 and APE/Ref-1 in the control of basal p53 stability and activity. Oncogene 24:3853–3863

    PubMed  CAS  Google Scholar 

  • Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW (2011) BH3-only proteins: orchestrators of apoptosis. Biochim Biophys Acta 1813:508–520

    PubMed  CAS  Google Scholar 

  • Shay JW, Wright WE (2001) Telomeres and telomerase: implications for cancer and aging. Radiat Res 155:188–193

    PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    PubMed  CAS  Google Scholar 

  • Shlien A, Tabori U, Marshall CR, Pienkowska M, Feuk L, Novokmet A, Nanda S, Druker H, Scherer SW, Malkin D (2008) Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome. Proc Natl Acad Sci USA 105:11264–11269

    PubMed  CAS  Google Scholar 

  • Tan M, Li S, Swaroop M, Guan K, Oberley LW, Sun Y (1999) Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem 274:12061–12066

    PubMed  CAS  Google Scholar 

  • Teodoro JG, Parker AE, Zhu X, Green MR (2006) p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313:968–971

    PubMed  CAS  Google Scholar 

  • Textor S, Fiegler N, Arnold A, Porgador A, Hofmann TG, Cerwenka A (2011) Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res 71:5998–6009

    PubMed  CAS  Google Scholar 

  • Thanasoula M, Escandell JM, Martinez P, Badie S, Munoz P, Blasco MA, Tarsounas M (2010) p53 prevents entry into mitosis with uncapped telomeres. Curr Biol 20:521–526

    PubMed  CAS  Google Scholar 

  • Trinh DL, Elwi AN, Kim SW (2010) Direct interaction between p53 and Tid1 proteins affects p53 mitochondrial localization and apoptosis. Oncotarget 1:396–404

    PubMed  Google Scholar 

  • Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schagger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    PubMed  CAS  Google Scholar 

  • Vaninetti NM, Geldenhuys L, Porter GA, Risch H, Hainaut P, Guernsey DL, Casson AG (2008) Inducible nitric oxide synthase, nitrotyrosine and p53 mutations in the molecular pathogenesis of Barrett’s esophagus and esophageal adenocarcinoma. Mol Carcinog 47:275–285

    PubMed  CAS  Google Scholar 

  • Vaseva AV, Marchenko ND, Moll UM (2009) The transcription-independent mitochondrial p53 program is a major contributor to nutlin-induced apoptosis in tumor cells. Cell Cycle 8:1711–1719

    PubMed  CAS  Google Scholar 

  • Wang PY, Zhuang J, Hwang PM (2012) p53: exercise capacity and metabolism. Curr Opin Oncol 24:76–82

    PubMed  CAS  Google Scholar 

  • Wanka C, Brucker DP, Bahr O, Ronellenfitsch M, Weller M, Steinbach JP, Rieger J (2011) Synthesis of cytochrome c oxidase 2: a p53-dependent metabolic regulator that promotes respiratory function and protects glioma and colon cancer cells from hypoxia-induced cell death. Oncogene (2011 Nov 28. doi: 10.1038/onc.2011.530. [Epub ahead of print])

    Google Scholar 

  • Wendt MK, Allington TM, Schiemann WP (2009) Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 5:1145–1168

    PubMed  CAS  Google Scholar 

  • Wu GS, Kim K, el-Deiry WS (2000) KILLER/DR5, a novel DNA-damage inducible death receptor gene, links the p53-tumor suppressor to caspase activation and apoptotic death. Adv Exp Med Biol 465:143–151

    PubMed  CAS  Google Scholar 

  • Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    PubMed  CAS  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    PubMed  CAS  Google Scholar 

  • Yin Y, Shen WH (2008) PTEN: a new guardian of the genome. Oncogene 27:5443–5453

    PubMed  CAS  Google Scholar 

  • Yoon KA, Nakamura Y, Arakawa H (2004) Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet 49:134–140

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I acknowledge that this review is based on a personal and selective review of literature that omits to cite many important papers, which are nevertheless part of the background of this chapter. I apologize to these authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Hainaut Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hainaut, P. (2013). TP53: Coordinator of the Processes That Underlie the Hallmarks of Cancer. In: Hainaut, P., Olivier, M., Wiman, K. (eds) p53 in the Clinics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3676-8_1

Download citation

Publish with us

Policies and ethics