Advertisement

Spherically Symmetric Space-Time Domains

  • Anadijiban Das
  • Andrew DeBenedictis
Chapter

Abstract

The first exact nontrivial solution of Einstein’s (vacuum) field equations (2.160i) was obtained by Schwarzschild [231]. This solution turned out to be very important in regard to experimental verifications of the theory of general relativity.

Keywords

Field Equation Test Particle World Line Coordinate Chart Junction Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abraham, R., Marsden, J.E. and Ratiu, T., Manifolds, tensor analysis, and applications, Springer-Verlag, New York, 1988.CrossRefMATHGoogle Scholar
  2. 2.
    Agrawal, P. and Das, A., Tensor, N.S. 28 53, 1974.Google Scholar
  3. 3.
    Aichelburg, P.C., Acta Phys. Austr. 34 279, 1971.Google Scholar
  4. 4.
    Alcubierre, M., Class. Quant. Grav. 11 L73, 1994.Google Scholar
  5. 5.
    Anton, H., Elementary linear algebra, John Wiley & Sons, New York, 2010.Google Scholar
  6. 6.
    Appelquist, T., Chodos, A. and Freund, P.G.O. (eds.), Modern Kaluza-Klein theories, Addison-Wesley Publishing Company, Menlo-Park, 1987.MATHGoogle Scholar
  7. 7.
    Arnowitt, R., Deser, S. and Misner, C.W., in Gravitation: An introduction to current research, 227, John Wiley and Sons, New York - London, 1962.Google Scholar
  8. 8.
    Artin, E., in Galois theory: Lectures delivered at the University of Notre Dame. (Notre Dame Mathematical Lectures No. 2.) 1, University of Notre Dame, Notre Dame - London, 1971.Google Scholar
  9. 9.
    Ashby, N., Liv. Rev. Relat. 6 1, 2003. http://www.livingreviews.org/lrr-2003-1.
  10. 10.
    Ashtekar, A., Lectures on non-perturbative canonical gravity, World Scientific Publishing, Singapore, 1991.MATHGoogle Scholar
  11. 11.
    Atiyah, M.F., Hitchin, N.G., Drinfeld, V.G. and Manin, I., Phys. Lett. 65A 185, 1978.Google Scholar
  12. 12.
    Bailin, D. and Love, A., Rep. Prog. Phys. 50 1087, 1987.Google Scholar
  13. 13.
    Baker, J.C., et. al Mon. Not. Roy. Ast. Soc. 308 1173, 1999.Google Scholar
  14. 14.
    Barceló, C. and Visser, M., Int. J. Mod. Phys. D11 1553, 2002.Google Scholar
  15. 15.
    Barstow, M.A., Bond, H.E., Holberg, J.B., Burleigh, M.R., Hubeny, I. and Koester, D., Mon. Not. Roy. Ast. Soc. 362 1134, 2005.Google Scholar
  16. 16.
    Baum, H. and Juhl, A., Conformal differential geometry: Q-curvature and conformal holonomy, Birkhäuser Verlag, Basel - Boston - Berlin, 2010.MATHGoogle Scholar
  17. 17.
    Bergmann, P.G., Introduction to the theory of relativity, Dover Publications, Mineola NY, 1976.Google Scholar
  18. 18.
    Biech, T. and Das, A., Gen. Rel. Grav. 18 93, 1986.Google Scholar
  19. 19.
    Biech, T. and Das, A., Can. J. Phys. 68 1403, 1990.Google Scholar
  20. 20.
    Birkhoff, G.D., Relativity and modern physics, Harvard University Press, Cambridge MA, 1923.MATHGoogle Scholar
  21. 21.
    Birkhoff, G.D. and MacLane, S., A survey of modern algebra, A.K. Peters/CRC Press, Natick MA - Boca-Raton Fl, 1998.Google Scholar
  22. 22.
    Birrell, N.D. and Davies, P.C.W., Quantum fields in curved space, Cambridge University Press, Cambridge - New York, 1989.Google Scholar
  23. 23.
    Bishop, R.L. and Goldberg, S.I., Tensor analysis on manifolds, Dover Publications Inc., New York, 1980.Google Scholar
  24. 24.
    Bondi, H., Mon. Not. Roy. Ast. Soc. 107 410, 1947.Google Scholar
  25. 25.
    Bondi, H., van der Burg, M.G. and Metzner, A.W.K., Proc. Roy. Soc. Lond. A269 21, 1962.Google Scholar
  26. 26.
    Bonnor, W.B., Proc. Phys. Soc. Lond. A67 225, 1954.Google Scholar
  27. 27.
    Börner, G., The early universe: Facts and fiction, Springer-Verlag, Berlin - Heidelberg - New York, 1993.Google Scholar
  28. 28.
    Boyer, R.H. and Lindquist, R.W., J. Math. Phys. 8 265, 1967.Google Scholar
  29. 29.
    Brännlund, J., van den Hoogen, R. and Coley, A., Int. J. Mod. Phys. D19 1915, 2010.Google Scholar
  30. 30.
    Buchdahl, H.A., Quart. J. Math. Ox. 5 116, 1954.Google Scholar
  31. 31.
    Buchdahl, H.A., Phys. Rev. 116 1027, 1959.Google Scholar
  32. 32.
    Buck, R.C., Advanced calculus, McGraw-Hill, New York, 1965.MATHGoogle Scholar
  33. 33.
    Buonanno, A., in Proceedings of Les Houches summer school, particle physics and cosmology: The fabric of spacetime, 3, Elsevier Publishing, Amsterdam, 2007.Google Scholar
  34. 34.
    Carmeli, M. and Kuzmenko, T., Int. J. Theo. Phys. 41 131, 2002.Google Scholar
  35. 35.
    Chandrasekhar, S., The mathematical theory of black holes, Oxford University Press, Oxford - New York, 1992.Google Scholar
  36. 36.
    Chazy, J., Bull. Soc. Math. France 52 17, 1924.Google Scholar
  37. 37.
    Chinn, W.G. and Steenrod, N.E., First concepts of topology, The Mathematical Associaton of America, Washington DC, 1966.MATHGoogle Scholar
  38. 38.
    Choquet-Bruhat, Y., DeWitt-Morette, C. and Dillard-Bleick, M., Analysis, manifolds and physics, North-Holland, Amsterdam, 1978.Google Scholar
  39. 39.
    Clark, G.L., Phil. Mag. 39 747, 1948.Google Scholar
  40. 40.
    Collas, P., Lett. Nuovo Cim. 21 68, 1978.Google Scholar
  41. 41.
    Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J. and Knuth, D.E., Adv. Comput. Math. 5 329, 1996.Google Scholar
  42. 42.
    Cotton, E., Ann. Fac. Sci. Toul. II 1 385, 1899.Google Scholar
  43. 43.
    Courant, R. and Hilbert, D., Methods of mathematical physics, republished by John Wiley and Sons, New York, 1989.Google Scholar
  44. 44.
    Curzon, H.E.J., Proc. Lond. Math. Soc. 23 477, 1924.Google Scholar
  45. 45.
    Darmois, G., Memorial des sciences mathematiques XXV, Gauthier-Villars, Paris, 1927.Google Scholar
  46. 46.
    Das, A., Prog. Theor. Phys. 17 373, 1957.Google Scholar
  47. 47.
    Das, A., Prog. Theor. Phys. 18 554, 1957.Google Scholar
  48. 48.
    Das, A., Prog. Theor. Phys. 24 915, 1960.Google Scholar
  49. 49.
    Das, A., Proc.Roy. Soc. A. 267 1, 1962.Google Scholar
  50. 50.
    Das, A., J. Math. Phys. 4 45, 1963.Google Scholar
  51. 51.
    Das, A., J. Math. Phys. 12 232, 1971.Google Scholar
  52. 52.
    Das, A., J. Math. Phys. 12 1136, 1971.Google Scholar
  53. 53.
    Das, A., J. Math. Phys. 14 1099, 1973.Google Scholar
  54. 54.
    Das, A., J. Math. Phys. 20 740, 1979.Google Scholar
  55. 55.
    Das, A., The special theory of relativity: A mathematical exposition, Springer, New York, 1993.CrossRefMATHGoogle Scholar
  56. 56.
    Das, A., Tensors: The mathematics of relativity theory  & continuum mechanics, Springer, New York - Berlin - London, 2007.Google Scholar
  57. 57.
    Das, A. and Agrawal, P., Gen. Rel. Grav. 5 359, 1974.Google Scholar
  58. 58.
    Das, A. and Aruliah, D., PINSA-A. 64 1, 1998.Google Scholar
  59. 59.
    Das, A., Biech, T. and Kay, D., J. Math. Phys. 31 2917, 1990.Google Scholar
  60. 60.
    Das, A. and Coffman, C.V., J. Math. Phys. 8 1720, 1967.Google Scholar
  61. 61.
    Das, A. and DeBenedictis, A., Prog. Theor. Phys. 108 119, 2001.Google Scholar
  62. 62.
    Das, A. and DeBenedictis, A., Gen. Rel. Grav. 36 1741, 2004.Google Scholar
  63. 63.
    Das, A., DeBenedictis, A. and Tariq, N., J. Math. Phys. 44 5637, 2003.Google Scholar
  64. 64.
    Das, A., Florides, P.S. and Synge, J.L., Proc. Roy. Soc. A. 263 451, 1961.Google Scholar
  65. 65.
    Das, A. and Kloster, S., J. Math. Phys. 21 2248, 1980.Google Scholar
  66. 66.
    Das, A. and Kloster, S., Phys. Rev. D62 104002, 2000.Google Scholar
  67. 67.
    Das, A., Tariq, N. and Biech, T., J. Math. Phys. 36 340, 1995.Google Scholar
  68. 68.
    Das, A., Tariq, N., Aruliah, D. and Biech, T., J. Math. Phys. 38 4202, 1997.Google Scholar
  69. 69.
    De, N., Prog. Theor. Phys. 33 545, 1965.Google Scholar
  70. 70.
    De, U.K., Acta. Phys. Polon. 30 901, 1966.Google Scholar
  71. 71.
    De, U.K. and Raychaudhouri, A.K., Proc. Roy. Soc. A. 303 47, 1968.Google Scholar
  72. 72.
    DeBenedictis, A., in Classical and quantum gravity research, 371, Nova Science Publishers Inc., New York, 2008.Google Scholar
  73. 73.
    DeBenedictis, A., Aruliah, D. and Das, A., Gen. Rel. Grav. 34 365, 2002.Google Scholar
  74. 74.
    DeBenedictis, A. and Das, A., Class. Quant. Grav. 18 1187, 2001.Google Scholar
  75. 75.
    DeBenedictis, A. and Das, A., Nucl. Phys. B653 279, 2003.Google Scholar
  76. 76.
    DeBenedictis, A., Das, A. and Kloster, S., Gen. Rel. Grav. 36 2481, 2004.Google Scholar
  77. 77.
    Dennemeyer, R., Introduction to partial differential equations and boundary value problems, McGraw-Hill, New York, 1968.MATHGoogle Scholar
  78. 78.
    Dirac, P.A.M., Proc. Roy. Soc. A133 60, 1931.Google Scholar
  79. 79.
    Dixon, W.G., Phil. Trans. Roy. Soc. Lond. A. 277 59, 1974.Google Scholar
  80. 80.
    Doran, C., Phys. Rev. D61 067503, 2000.Google Scholar
  81. 81.
    Duncombe, R.L., Astron. J. 61 266, 1956.Google Scholar
  82. 82.
    Eddington, A.S., Nature 113 192, 1924.Google Scholar
  83. 83.
    Eddington, A.S., Mon. Not. Roy. Ast. Soc. 90 668, 1930.Google Scholar
  84. 84.
    Eddington, A.S., The mathematical theory of relativity, Cambridge University Press, Cambridge, 1965.Google Scholar
  85. 85.
    Eguchi, T. and Hanson, A.J., Phys. Lett. B74 249, 1978.Google Scholar
  86. 86.
    Ehlers, J., Gen. Rel. Grav. 25 1225, 1993.MathSciNetADSCrossRefMATHGoogle Scholar
  87. 87.
    Einstein, A., Ann. der Phys. 18 639, 1905.Google Scholar
  88. 88.
    Einstein, A., Preuss. Akad. Wiss. Berlin, Sitz. 142, 1917.Google Scholar
  89. 89.
    Einstein, A., The meaning of relativity, Princeton University Press, Princeton, 1922.CrossRefMATHGoogle Scholar
  90. 90.
    Eisenhart, L.P., Riemannian geometry, Princeton University Press, Princeton, 1926 (reprint 1997).MATHGoogle Scholar
  91. 91.
    Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., Higher transendental functions: Vol. II, McGraw-Hill, New York, 1953.Google Scholar
  92. 92.
    Ernst, F.J., Phys. Rev. 167 1175, 1968.Google Scholar
  93. 93.
    Ernst, F.J., Phys. Rev. 168 1415, 1968.Google Scholar
  94. 94.
    Evans, L.C., Partial differential equations, American Math. Society, Providence RI, 1998.MATHGoogle Scholar
  95. 95.
    Faber, R.L., Differential geometry and relativity theory: An introduction, Marcel Dekker Inc., New York, 1983.MATHGoogle Scholar
  96. 96.
    Falcke, H. and Hehl, F.W. (eds.), The galactic black hole: Lectures on general relativity and astrophysics, I.O.P. Publishing, Bristol - Philadelphia, 2003.Google Scholar
  97. 97.
    Feynman, R.P., Leighton, R.B. and Sands, M., The Feynman lectures on physics: Vol. II, Addison-Wesley Publishing Co., Reading MA, 1977.Google Scholar
  98. 98.
    Fierz, M. and Pauli, W., Proc. Roy. Soc. A173 211, 1939.Google Scholar
  99. 99.
    Finkelstein, D., Phys. Rev. 100 924, 1955.Google Scholar
  100. 100.
    Finkelstein, D., Phys. Rev. 110 965, 1958.Google Scholar
  101. 101.
    Fishback, E., Sudarsky, D., Szafer, A., Talmadge, C. and Anderson, S.H., Phys. Rev. Lett. 56 3, 1986.Google Scholar
  102. 102.
    Flamm, L., Phys. Zeitschr. 17 448, 1916.Google Scholar
  103. 103.
    Flanagan, E.E. and Hughes, S.A., New J. Phys. 7 204, 2005.Google Scholar
  104. 104.
    Flanders, H., Differential forms with applications to the physical sciences, Dover Publications, New York - London, 1989.MATHGoogle Scholar
  105. 105.
    Friedmann, A., Z. Phys. 10 377, 1922. English translation (by G.F.R. Ellis and H. van Elst): Gen. Rel. Grav. 31 1991, 1999.Google Scholar
  106. 106.
    Frolov, V.P. and Novikov, I.D., Black hole physics: Basic concepts and new developments, Kluwer Academic Publishers, Dordrecht, 1998.MATHGoogle Scholar
  107. 107.
    Furey, N. and DeBenedictis, A., Class. Quant. Grav. 22 313, 2005.Google Scholar
  108. 108.
    Gasperini, M., Elements of string cosmology, Cambridge University Press, Cambridge - New York - Melbourne, 2007.CrossRefMATHGoogle Scholar
  109. 109.
    Gegenberg, J.D., On the stationary Einstein-Maxwell-Klein-Gordon equations, Ph.D. thesis, Simon Fraser University, Burnaby, 1981.Google Scholar
  110. 110.
    Gegenberg, J.D. and Das, A., Gen. Rel. Grav. 16 817, 1984.Google Scholar
  111. 111.
    Gegenberg, J.D. and Das, A., Phys. Lett. 112A 427, 1985.Google Scholar
  112. 112.
    Gelbaum, B.R. and Olmsted, J.M.H., Counterexamples in analysis, Holden-Day Inc., San Francisco, 1964.MATHGoogle Scholar
  113. 113.
    Gel’fand, I.M., Lectures on linear algebra, R.E. Kreiger Pub. Co., New York, 1978.Google Scholar
  114. 114.
    Gel’fand, I.M., Milnos, R.A. and Shapiro, Z.A., Representations of the rotation and Lorentz groups and their applications, MacMillan Co., New York, 1963.Google Scholar
  115. 115.
    Gibbons, G.W., in General relativity: An Einstein centenary survey, 639, Cambridge University Press, Cambridge - New York, 1979.Google Scholar
  116. 116.
    Gödel, K., Rev. Mod. Phys. 21 447, 1949.Google Scholar
  117. 117.
    Green, M.B., Schwarz J.H. and Witten, E., Superstring theory: Volumes 1 & 2, Cambridge University Press, Cambridge - New York - Melbourne - Madrid, 1987.Google Scholar
  118. 118.
    Griffiths, J.B. and Podolský, J., Exact space-times in Einstein’s general relativity, Cambridge University Press, Cambridge - New York, 2009.CrossRefMATHGoogle Scholar
  119. 119.
    Gullstrand, A., Arkiv. Mat. Astron. Fys. 16 1, 1922.Google Scholar
  120. 120.
    Gunion, J.F., Haber, H., Kane, G., Dawson, S. and Haber, H.E., The Higgs hunter’s guide, Westview Press, Boulder, 2000.Google Scholar
  121. 121.
    Halmos, P.R., Finite-dimensional vector spaces, Springer, New York, 1987.Google Scholar
  122. 122.
    Hamilton, M.J., On the combined Dirac-Einstein-Maxwell field equations, Ph.D. thesis, Simon Fraser University, Burnaby, 1976.Google Scholar
  123. 123.
    Hamermesh, M., Group theory and its application to physical problems, Addison-Wesley Publishing Co., Reading MA, 1962.MATHGoogle Scholar
  124. 124.
    Hartle, J.B., Gravity: An introduction to Einstein’s general relativity, Pearson Education Inc. as Addison-Wesley Publishing Co., San Francisco - Boston - New York, 2003.Google Scholar
  125. 125.
    Hawking, S.W., Phys. Lett. A60 81, 1977.Google Scholar
  126. 126.
    Hawking, S.W. and Ellis, G.F.R., The large scale structure of space–time, Cambridge University Press, Cambridge - New York - Melbourne - Madrid, 1973.CrossRefMATHGoogle Scholar
  127. 127.
    Hawking, S.W. and Turok, N., Phys. Lett. B425 25, 1998.Google Scholar
  128. 128.
    Heisenberg, W., Kortel, F. and Mitter, H., Zeits. Naturfor. 10A 425, 1955.Google Scholar
  129. 129.
    Henneaux, M. and Teitelboim, C., Commun. Math. Phys. 98 391, 1985.Google Scholar
  130. 130.
    Hicks, N.J., Notes on differential geometry, Van Nostrand Reinhold Co., London, 1971.Google Scholar
  131. 131.
    Hilbert, D., Konigl. Gesell. d. Wiss. Gottingen Nach. Math. Phys. Kl. 395, 1915.Google Scholar
  132. 132.
    Hocking, J.G. and Young, G.S., Topology, Addison-Wesley Publishing Co. Inc., Reading MA, 1961.MATHGoogle Scholar
  133. 133.
    Hoffman, K. and Kunze, R., Linear algebra, Prentice-Hall, New Jersey, 1971.MATHGoogle Scholar
  134. 134.
    Hogan, P.A., Lett. Nuovo Cim. 16 33, 1976.Google Scholar
  135. 135.
    Hoyle, F. and Narlikar, J.V., Proc. Roy. Soc. Lond. A. 277 1, 1963.Google Scholar
  136. 136.
    Hubble, E.P., Proc. Nat. Acad. Sci. 15 168, 1929.Google Scholar
  137. 137.
    Hulse, R.A. and Taylor, J.H. Jr., Nobel prize press release, http://nobelprize.org/nobel_prizes/physics/laureates/1993/.
  138. 138.
    Iooss, G. and Joseph, D.D., Elementary stability and bifurcation theory, Springer-Verlag, New York - Berlin, 1997.Google Scholar
  139. 139.
    Iorio, L., Schol. Res. Exch. 2008 105235, 2008.Google Scholar
  140. 140.
    Israel, W., Nuovo Cim. B44 1, 1966.Google Scholar
  141. 141.
    Israel, W., Phys. Rev. 164 1776, 1967.Google Scholar
  142. 142.
    Israel, W. and Wilson, G.A., J. Math. Phys. 13 865, 1972.Google Scholar
  143. 143.
    Jackiw, R., Rev. Mod. Phys. 49 681, 1977.Google Scholar
  144. 144.
    Jebsen, J.T., Ark. Mat. Ast. Fys. 15 Nr.18, 1, 1921. English translation (by S. Antoci and D.E. Liebscher): Gen. Rel. Grav. 37 2253, 2005.Google Scholar
  145. 145.
    Jeffery, G.B., Proc. Roy. Soc. Lond. Series A. 99 123, 1921.Google Scholar
  146. 146.
    Kar, S., Dadhich, N. and Visser, M., Pramana. 63 859, 2004.Google Scholar
  147. 147.
    Kasner, E., Am. J. Math. 43 217, 1921.Google Scholar
  148. 148.
    Kerr, R.P., Phys. Rev. Lett. 11 237, 1963.Google Scholar
  149. 149.
    Kloster, S., Som, M.M. and Das, A., J. Math. Phys. 15 1096, 1974.Google Scholar
  150. 150.
    Kobayashi, S. and Nomizu, K., Foundations of differential geometry: Vol. I, Wiley-Interscience, New York, 1963.Google Scholar
  151. 151.
    Kostelich, E.J. and Armbruster, D., Introductory differential equations: From linearity to chaos, Addison-Wesley, Reading MA, 1996.Google Scholar
  152. 152.
    Kramer, D., Neugebauer, G. and Stephani, H., Fortschr. Phys. 20 1, 1972.Google Scholar
  153. 153.
    Kruskal, M.D., Phys. Rev. 119 1743, 1960.Google Scholar
  154. 154.
    Kutasov, D., Marino, M. and Moore, G., J.H.E.P. 0010 045, 2000.Google Scholar
  155. 155.
    Lanczos, C., Phys. Zeits. 23 537, 1922.Google Scholar
  156. 156.
    Lanczos, C., Ann. Phys. 74 518, 1924.Google Scholar
  157. 157.
    Lanczos, C., Ann. Math. 39 842, 1938.Google Scholar
  158. 158.
    Lanczos, C., Rev. Mod. Phys. 29 337, 1957.Google Scholar
  159. 159.
    Lanczos, C., The variational principles of mechanics, Dover Publications, Mineola NY, 1986.MATHGoogle Scholar
  160. 160.
    Lee, C.Y., Branching theorem of the symplectic groups and representation theory of semi-simple Lie algebras, Ph.D. thesis, Simon Fraser University, Burnaby, 1973.Google Scholar
  161. 161.
    Lemaître, G., Ann. Soc. Sci. Brux. 47 49, 1927.Google Scholar
  162. 162.
    Lemaître, G., Ann. Soc. Sci. Brux. A53 51, 1933.Google Scholar
  163. 163.
    Lemaître, G., Compt. Rend. Acad. Sci. Paris. 196 903, 1933.Google Scholar
  164. 164.
    Lemos, J.P.S. and Zanchin, V.T., Phys. Rev. D54 3840, 1996.Google Scholar
  165. 165.
    Lense, J. and Thirring, H., Phys. Zs. 19 156, 1918.Google Scholar
  166. 166.
    Lichnerowicz, A., Théories relativistes de la gravitation et l’electromanétisme, Masson, Paris, 1955.Google Scholar
  167. 167.
    Liko, T., Overduin, J.M. and Wesson, P.S., Space Sci. Rev. 110 337, 2004.Google Scholar
  168. 168.
    Lobo, F.S.N., in Classical and quantum gravity research, 1, Nova Science Publishers Inc., New York, 2008.Google Scholar
  169. 169.
    London, F. and London, H., Proc. Roy. Soc. A. 149 71, 1935.Google Scholar
  170. 170.
    Lovelock, D., J. Math. Phys. 12 498, 1971.Google Scholar
  171. 171.
    Lovelock, D. and Rund, H., Tensors, differential forms, and variational principles, John Wiley and Sons, New York, 1975.MATHGoogle Scholar
  172. 172.
    Maggiore, M., Gravitational Waves: Vol. 1, Oxford University Press, Oxford, 2008.Google Scholar
  173. 173.
    Majumdar, S.D., Phys. Rev. 72 390, 1947.Google Scholar
  174. 174.
    Mak, M.K. and Harko, T., Int. J. Mod. Phys. D11 1389, 2002.Google Scholar
  175. 175.
    Mann, R.B. and Vincent, D.E., Phys. Lett. 107A 75, 1985.Google Scholar
  176. 176.
    Marsden, J.E. and Tromba, A.J., Vector calculus, W. H. Freeman and Co., New York, 2003.Google Scholar
  177. 177.
    Martin, A.D. and Mizel, V.J., Introduction to linear algebra, McGraw-Hill, New York, 1966.Google Scholar
  178. 178.
    Mee, M., Higgs force: The symmetry-breaking force that makes the world an interesting place, Lutterworth Press, Cambridge, 2012.Google Scholar
  179. 179.
    Meissner, W. and Ochsenfeld, R., Naturwissensch. 21 787, 1933.Google Scholar
  180. 180.
    Melvin, M.A., Phys. Lett. 8 65, 1964.Google Scholar
  181. 181.
    Michelson, A.A. and Morley E.W., Am. J. Sci. 34 333, 1887.Google Scholar
  182. 182.
    Miller, J., Physics Today. 63 No. 7, 14, 2010.Google Scholar
  183. 183.
    Misner, C.W. and Wheeler, J.A., Ann. of Phys. 2 525, 1957.Google Scholar
  184. 184.
    Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, W. H. Freeman and Co., San Francisco, 1973.Google Scholar
  185. 185.
    Morris, M.S. and Thorne, K.S., Am. J. of Phys. 56 395, 1988.Google Scholar
  186. 186.
    Mukhanov, V. and Winitzki, S., Introduction to quantum effects in gravity, Cambridge University Press, Cambridge, 2007.MATHGoogle Scholar
  187. 187.
    Müller, A., Proceedings of the school on particle physics, gravity and cosmology: Proc. Sci. 017, 2007.Google Scholar
  188. 188.
    Myers, R.C. and Perry, M.J., Ann. Phys. 172 304, 1986.Google Scholar
  189. 189.
    Naber, G.L., The geometry of Minkowski spacetime: An introduction to the mathematics of the special theory of relativity, Springer-Verlag, New York, 1992.MATHGoogle Scholar
  190. 190.
    Narlikar, J.V., An introduction to cosmology, Cambridge University Press, Cambridge, 2002.Google Scholar
  191. 191.
    Nehari, Z., Introduction to complex analysis, Allyn and Bacon, Boston, 1968.MATHGoogle Scholar
  192. 192.
    Neugebauer, G., Habilitationsschrift, Jena, 1969.Google Scholar
  193. 193.
    Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A. and Torrence, R., J. Math. Phys. 6 918, 1965.Google Scholar
  194. 194.
    Newman, E. and Penrose, R., J. Math. Phys. 3 566, 1962.Google Scholar
  195. 195.
    Noll, W., Notes on tensor analysis (prepared by Wang, C.C.), Mathematics Department, Johns Hopkins University, 1963.Google Scholar
  196. 196.
    Nordström, G., Verhandel. Koninkl. Ned. Akad. Wetenschap. Afdel. Natuurk. 26 1201, 1918.Google Scholar
  197. 197.
    O’Neill, B., Elementary differential geometry, Academic Press, San Diego - Chestnut Hill MA, 1997.MATHGoogle Scholar
  198. 198.
    O’Neill, B., The geometry of Kerr black holes, A. K. Peters, Wellesley MA, 1995.MATHGoogle Scholar
  199. 199.
    Oriti, D. (ed.), Approaches to quantum gravity: Toward a new understanding of space, time and matter, Cambridge University Press, New York, 2009.MATHGoogle Scholar
  200. 200.
    Padmanabhan, T., Structure formation in the universe, Cambridge University Press, Cambridge - New York - Melbourne, 1993.Google Scholar
  201. 201.
    Padmanabhan, T., Cosmology and astrophysics through problems, Cambridge University Press, Cambridge - New York - Melbourne, 1996.Google Scholar
  202. 202.
    Padmanabhan, T., After the first three minutes: The story of our universe, Cambridge University Press, Cambridge - New York - Melbourne, 1998.CrossRefGoogle Scholar
  203. 203.
    Painlevé, P., C. R. Acad. Sci. (Paris) 173 677, 1921.Google Scholar
  204. 204.
    Papapetrou, A., Proc. Roy. Soc. Irish Acad. A51 191, 1947.Google Scholar
  205. 205.
    Pechlaner, E. and Das, A., Gen. Rel. Grav. 5 459, 1974.Google Scholar
  206. 206.
    Peebles, P. J. E., Principles of physical cosmology, Princeton University Press, Princeton, 1993.Google Scholar
  207. 207.
    Penrose, R. and Rindler, W., Spinors and space–time: Volumes 1 & 2, Cambridge University Press, Cambridge - New York - Melbourne, 1987.Google Scholar
  208. 208.
    Perjes, Z., Phys. Rev. Lett. 27 1668, 1971.Google Scholar
  209. 209.
    Perlmutter, S., et. al. Astroph. J. 517 565, 1999.Google Scholar
  210. 210.
    Petrov, A.Z., Einstein spaces, Pergamon Press, London - New York - Toronto, 1969.MATHGoogle Scholar
  211. 211.
    Pitjeva, E.V., Astron. Lett. 31 340, 2005.Google Scholar
  212. 212.
    Pugh, E.M. and Pugh G.E., Am. J. Phys. 35 153, 1967.Google Scholar
  213. 213.
    Rainich, G.Y., Trans. Amer. Math. Soc. 27 106, 1925.Google Scholar
  214. 214.
    Raychaudhuri, A.K., Phys. Rev. 98 1123, 1955.Google Scholar
  215. 215.
    Raychaudhuri, A.K., Z. Astroph. 43 161, 1957.Google Scholar
  216. 216.
    Raychaudhuri, A.K., Banerji, S. and Banerjee, A., General relativity, astrophysics, and cosmology, Springer-Verlag, New York, 1992.CrossRefGoogle Scholar
  217. 217.
    Regge, T. and Wheeler, J.A., Phys. Rev. 108 1063, 1957.Google Scholar
  218. 218.
    Reissner, H., Ann. der Phys. 50 106, 1916.Google Scholar
  219. 219.
    Robertson, H.P., Rev. Mod. Phys. 5 62, 1933.Google Scholar
  220. 220.
    Robinson, D.C., Phys. Rev. Lett. 34 905, 1975.Google Scholar
  221. 221.
    Rovelli, C., Quantum gravity, Cambridge University Press, Cambridge - New York, 2004.CrossRefMATHGoogle Scholar
  222. 222.
    Ruban, V.A., Sov. Phys. J.E.T.P. 29 1027, 1969.Google Scholar
  223. 223.
    Sachs, R.K., Proc. Roy. Soc. Lond. A270 103, 1962.Google Scholar
  224. 224.
    Sagan, H., Introduction to the calculus of variations, McGraw-Hill, New York, 1969.Google Scholar
  225. 225.
    Sahni, V., Class. Quant. Grav. 19 3435, 2002.Google Scholar
  226. 226.
    Schlamminger, S., Choi, K.-Y., Wagner, T.A., Gundlach, J.H. and Adelberger E.G., Phys. Rev. Lett. 100 041101, 2008.Google Scholar
  227. 227.
    Schmidt, H.J., Gen. Rel. Grav. 37 1157, 2005.Google Scholar
  228. 228.
    Schouten, J.A., Math. Z. 11 58, 1921.Google Scholar
  229. 229.
    Schouten, J.A., Ricci calculus, Springer-Verlag, Berlin, 1954.MATHGoogle Scholar
  230. 230.
    Schutz, B., A first course in general relativity, Cambridge University Press, Cambridge, 2009.CrossRefMATHGoogle Scholar
  231. 231.
    Schwarzschild, K., Sitz. Preuss. Akad. Wiss. 1 189, 1916.Google Scholar
  232. 232.
    Sen, A., J.H.E.P. 9912 027, 1999.Google Scholar
  233. 233.
    Sen, A., Mod. Phys. Lett. A17 1797, 2002.Google Scholar
  234. 234.
    Sen, N., Ann. Phys. 73 365, 1924.Google Scholar
  235. 235.
    Smith, W.L. and Mann, R.B., Phys. Rev. D56 4942, 1997.Google Scholar
  236. 236.
    Sopova, V. and Ford, L.H., Phys. Rev. D66 045026, 2002.Google Scholar
  237. 237.
    Spivak, M., Calculus on manifolds, The Benjamin/Cummings Publishing Company, California, 1965.MATHGoogle Scholar
  238. 238.
    Stephani, H., Relativity: An introduction to special and general relativity, Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
  239. 239.
    Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C. and Herlt, E., Exact solutions of Einstein’s field equations, Cambridge University Press, 2003.Google Scholar
  240. 240.
    Sylvester, J.J., Phil. Mag. IV 138, 1852.Google Scholar
  241. 241.
    Synge, J.L., Proc. Roy. Irish Acad. A53 83, 1950.Google Scholar
  242. 242.
    Synge, J.L., Relativity: The special theory, North-Holland Publishing, Amsterdam, 1965. Reprinted 1980.Google Scholar
  243. 243.
    Synge, J.L., Relativity: The general theory, North-Holland Publishing, Amsterdam, 1966.Google Scholar
  244. 244.
    Synge, J.L. and Schild, A., Tensor calculus, University of Toronto Press, Toronto, 1966.Google Scholar
  245. 245.
    Szekeres, P., Publ. Math. Debrec. 7 285, 1960.Google Scholar
  246. 246.
    Thiemann, T., Modern canonical quantum general relativity, Cambridge University Press, Cambridge - New York, 2007.CrossRefMATHGoogle Scholar
  247. 247.
    Thorne, K.S., Black holes and time warps: Einstein’s outrageous legacy, W.W. Norton and Co., New York - London, 1994.MATHGoogle Scholar
  248. 248.
    Tipler, F.J., Phys. Rev. D9 2203, 1974.Google Scholar
  249. 249.
    Tolman, R.C., Proc. Nat. Acad. Sci. 20 169, 1934.Google Scholar
  250. 250.
    Tolman, R.C., Relativity, thermodynamics, and cosmology, Oxford University Press, Oxford, 1950.Google Scholar
  251. 251.
    Van Stockum, W.J., Proc. Roy. Soc. Edin. 57 135, 1937.Google Scholar
  252. 252.
    Vanzo, L., Phys. Rev. D56 6475, 1997.Google Scholar
  253. 253.
    Vishveshwara, C.V., J. Math. Phys. 9 1319, 1968.Google Scholar
  254. 254.
    Visser, M., Lorentzian wormholes: From Einstein to Hawking, A.I.P. Press, Woodbury NY, 1996.Google Scholar
  255. 255.
    Visser, M., in The Kerr spacetime: Rotating black holes in general relativity, 3, Cambridge University Press, Cambridge, 2009.Google Scholar
  256. 256.
    Voorhees, B.H., Phys. Rev. D2 2119, 1970.Google Scholar
  257. 257.
    Wald, R.M., General relativity, University of Chicago Press, Chicago - London, 1984.MATHGoogle Scholar
  258. 258.
    Wald, R.M., Quantum field theory in curved spacetime and black hole thermodynamics, University of Chicago Press, Chicago, 1994.MATHGoogle Scholar
  259. 259.
    Walker, A.G., J. Lond. Math. Soc. 19 219, 1944.Google Scholar
  260. 260.
    Weinberg, S., Gravitation and cosmology: Principles and applications of the general theory of relativity, Wiley and Sons, New York, 1972.Google Scholar
  261. 261.
    Weyl, H., Ann. Phys. 54 117, 1917.Google Scholar
  262. 262.
    Wheeler, J.A., Phys. Rev. 97 511, 1955.Google Scholar
  263. 263.
    Wheeler, J.A., in Logic, methodology and philosophy of science: Proceedings of the 1960 international conference, 361, Stanford University Press, Stanford, 1962.Google Scholar
  264. 264.
    Will, C.M., Ann. Phys. 15 19, 2006.Google Scholar
  265. 265.
    Will, C.M., Liv. Rev. Relat. 9 3, 2006. http://www.livingreviews.org/lrr-2006-3.
  266. 266.
    Willmore, T.J., An introduction to differential geometry, Oxford University Press, Oxford, 1959.MATHGoogle Scholar
  267. 267.
    Wasserman, R.H., Tensors and manifolds with applications to physics, Oxford University Press, Oxford - New York, 2004.MATHGoogle Scholar
  268. 268.
    Yano, K. and Bochner, S., Curvature and Betti numbers, Princeton University Press, Princeton, 1953.MATHGoogle Scholar
  269. 269.
    York, J.W., Phys. Rev. Lett. 26 1656, 1971.Google Scholar
  270. 270.
    Zemanian, A.H., Distribution theory and transform analysis, Dover, New York, 2010.Google Scholar
  271. 271.
    Zenk, L.G., On the stationary gravitational fields, M.Sc. thesis, Simon Fraser University, Burnaby, 1975.Google Scholar
  272. 272.
    Zenk, L.G. and Das, A., J. Math. Phys. 19 535, 1978.Google Scholar
  273. 273.
    Zipoy, D.M., J. Math. Phys. 7 1137, 1966.Google Scholar
  274. 274.
    Zwiebach, B., A first course in string theory, Cambridge University Press, Cambridge - New York - Melbourne - Madrid - Cape Town, 2009.CrossRefMATHGoogle Scholar
  275. 275.
    Zwillinger, D., Handbook of differential equations, Academic Press, San Diego - Chestnut Hill MA, 1998.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Anadijiban Das
    • 1
  • Andrew DeBenedictis
    • 1
  1. 1.Simon Fraser UniversityBurnabyCanada

Personalised recommendations