Skip to main content

Modelling Janus Nanoparticles

  • Chapter
  • First Online:
Metal Clusters and Nanoalloys

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Janus particles are compartmentalised objects with different, usually even opposite, chemical make-ups on their two hemispheres, which make them a unique class of materials at the meso- and nanoscale. The name is reminiscent of Janus the ancient Roman god with two heads looking in opposite directions, simultaneously forward to the future and backward to the past.First made by Casagrande and Veyssie (Compt Rend Ac Sci 306:1423, 1988) of one hydrophilic and one hydrophobic hemisphere, raised to an international attention as “new animals with a polar and an apolar face” by de Gennes in his Nobel lecture, Janus particles are acquiring more and more importance because of their wide range of technological applications. Thanks to their toposelective and functionalised coating, they are utilised as surfactants, drug-delivers and catalysts. The flexibility proper of soft matter has been thought to be applied to bimetallic nanoalloys where the Janus motif represents a layered segregation effect leading to two different chemical regions in the cluster. Janus nanoalloys have been proposed in magneto-optical applications, such as structural colourations on textile, and as flip-flop switchers in the presence/absence of a magnetic field.The numerical modelling of Janus particles is a useful tool to understand and drive their synthesis and preparation. In this chapter, the attention is focused, but not limited, on the modelling of the growth of bi-comparmentalised nanoalloys, where the cases of gold–platinum (AgPt) and silver–cobalt (AgCo) are presented as paradigmatic examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gennes PD (1992) Angew Chem-Int Ed 31:842

    Google Scholar 

  2. DeGennes P (1992) Rev Mod Phys 64:645

    Google Scholar 

  3. Casagrande C, Veyssie M (1988) Compt Rend Ac Sci 306:1423

    Google Scholar 

  4. Casagrande C, Fabre P, Raphäel E, Veyssie M (1989) Europhys Lett 9:251

    CAS  Google Scholar 

  5. Walther A, Müller A (2008) Soft Matter 4:663

    CAS  Google Scholar 

  6. Jiang S, Granick S (2008) Langmuir 24:2438

    CAS  Google Scholar 

  7. Granick S, Jiang S, Chen Q (2009) Phys Today 62:68

    Google Scholar 

  8. Jiang S, Granick S (2007) J Chem Phys 127:161102

    Google Scholar 

  9. Zhang Z, Glotzer S (2004) Nano Lett 4:1407

    CAS  Google Scholar 

  10. Glotzer SC, Solomon MJ (2007) Nat Mater 6:557

    Google Scholar 

  11. Nie Z, Li W, Seo M, Xu S, Kumacheva E (2006) J Am Chem Soc 128:9408

    CAS  Google Scholar 

  12. Zentagraf T, Valentine J, Tapia N, Li J, Zang X (2010) Adv Mater 22:2561

    Google Scholar 

  13. Parsina I, Baletto F (2010) J Phys Chem C 114:1504

    CAS  Google Scholar 

  14. Paz S, Leiva E, Jellinek J, Mariscal MM (2011) J Chem Phys 134:094701

    CAS  Google Scholar 

  15. Ferrando R, Jellinek J, Johnston R (2008) Chem Rev 108:845–910

    CAS  Google Scholar 

  16. Franceschetti A, Zunger A (1999) Nature 402:60

    CAS  Google Scholar 

  17. Jellinek J (2008) Faraday Discussion 138:193

    Google Scholar 

  18. Darby S, Mortimer-Jones TV, Johnston RL, Roberts C (2002) J Chem Phys 116:1536

    CAS  Google Scholar 

  19. Zhang M, Fournier R, Mol J (2006) Struct-Theochem 762:49–56

    CAS  Google Scholar 

  20. Chen F, Curley BC, Rossi G, Johnston RL (2007) J Phys Chem C 111:9157–9165

    CAS  Google Scholar 

  21. DeLaHoz M, Tovar J, Callejas R, Balbuena P (2009) Mol Simul 35:785–794

    Google Scholar 

  22. Rossi G, Rapallo A, Mottet C, Fortunelli A, Baletto F, Ferrando R (2004) Phys Rev Lett 93:105503

    CAS  Google Scholar 

  23. Baletto F, Mottet C, Ferrando R (2003) Phys Rev Lett 90:135504

    CAS  Google Scholar 

  24. Chen D, Wang W, Huang S (2006) J Phys Chem B 110:16193

    Google Scholar 

  25. Barnard A (2010) Rep Prog Phys 73:086502

    Google Scholar 

  26. Johnston RL (2002) Atomic and molecular clusters. Taylor and Francis, London

    Google Scholar 

  27. Ferrando R, Fortunelli A, Johnston R (2008) Phys Chem Chem Phys 10:640–649

    CAS  Google Scholar 

  28. Hong L, Jiang S, Granick S (2006) Langmuir 22:9495

    CAS  Google Scholar 

  29. Liddell CM, Summers CJ, Gokhale AM (2003) Mater Charact 50:69

    CAS  Google Scholar 

  30. Langer R, Tirrell DA (2004) Nature 428:487

    CAS  Google Scholar 

  31. Grätzel M (2001) Nature 414:338

    Google Scholar 

  32. Perro A, Reculusa S, Ravaine S, Bourgeat-Lami E, Duguet E (2005) J Mater Chem 15:3745

    CAS  Google Scholar 

  33. Pawar A, Kretzschmar I (2010) Macromol Rapid Commun 31:150

    CAS  Google Scholar 

  34. Hong L, Cacciuto A, Luijten E, Granick S (2006) Nano Lett 6:2510

    CAS  Google Scholar 

  35. Bianchi E, Blaak R, Likos C (2011) Phys Chem Chem Phys 13:6397

    CAS  Google Scholar 

  36. Sciortino F, Giacometti A, Pastore G (2009) Phys Rev Lett 103:237801

    Google Scholar 

  37. Sciortino F, Giacometti A, Pastore G (2010) Phys Chem Chem Phys 12:11869

    CAS  Google Scholar 

  38. Fantoni R, Giacometti A, Sciortino F, Pastore G (2011) Soft Matter 7:2419

    CAS  Google Scholar 

  39. Hardin RH, Sloane NJA, Smith WD (1994) http://www2.research.att.com/njas/icosahedral.codes/

  40. Kern N, Frenkel D (2003) J Chem Phys 118:9882

    CAS  Google Scholar 

  41. Giacometti A, Lado F, Largo J, Pastore G, Sciortino F (2010) J Chem Phys 132:174110

    Google Scholar 

  42. Chen Q, Whitmer J, Jiang S, Bae S, Luijten E, Granick S (2011) Science 331:199

    CAS  Google Scholar 

  43. Delogu F (2010) Mater Sci Forum 653:31

    CAS  Google Scholar 

  44. Haberland H, Hippler T, Donges J, Kostko O, Schmidt M, von Issendorff B (2005) Phys Rev Lett 94:035701

    Google Scholar 

  45. Hock C, Strassburg S, Haberland H, von Issendorff B, Aguado A, Schmidt M (2008) Phys Rev Lett 101:023401

    CAS  Google Scholar 

  46. Mottet C, Rossi G, Baletto F, Ferrando R (2005) Phys Rev Lett 95:035501

    CAS  Google Scholar 

  47. Cheng D, Wang W, Huang S (2008) Phys Chem Chem Phys 10:2513–2518

    CAS  Google Scholar 

  48. Cheng D, Huang S, Wang W (2006) Eur Phys J D 39:41–48

    CAS  Google Scholar 

  49. Shirinyan A, Wautelet M (2004) Nanotechnology 15:1720

    CAS  Google Scholar 

  50. Vallée R, Wautelet M, Dauchot J P, Hecq M (2001) Nanotechnology 12:68

    Google Scholar 

  51. Wales D (1994) J Chem Phys 101:3750

    CAS  Google Scholar 

  52. Paz-Borbon L, Johnston R, Barcaro G et al (2007) J Phys Chem C 111:2936

    CAS  Google Scholar 

  53. Rossi G, Ferrando R (2006) Chem Phys Lett 423:17–22

    CAS  Google Scholar 

  54. Doye JPK, Wales DJ (1998) Phys Rev Lett 80:1357

    CAS  Google Scholar 

  55. Laio A, Parrinello M (2002) Proc Natl Acad Sci USA 99:12562

    CAS  Google Scholar 

  56. Laio A, Gervasio FL (2008) Rep Prog Phys 71:126601

    Google Scholar 

  57. Santarossa G, Vargas A, Iannuzzi M, Baiker A (2010) Phys Rev B 81:174205

    Google Scholar 

  58. Bealing C, Fugallo G, Martonak R, Molteni C (2010) Phys Chem Chem Phys 12:8542

    CAS  Google Scholar 

  59. Haberland, H (ed) (1994) Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms. Berlin/Heidelberg, Germany: Springer-Verlag.

    Google Scholar 

  60. Baletto F, Levi A, Ferrando R (2003) Growth simulations of nanoclusters. In: Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, New York

    Google Scholar 

  61. Baletto F, Ferrando R (2005) Rev Mod Phys 371:77

    Google Scholar 

  62. Yacamán M, Gutierrez-Wing C, Miki M, Yang D-Q, Piyakis K, Sacher E (2005) J Phys Chem B 109:9703

    Google Scholar 

  63. Mayoral A, MejôŔřůia-Rosales S, Mariscal MM, PôŔřůerez-Tijerinab E, YacamôŔřůan M-J (2010) Nanoscale 2:2647

    CAS  Google Scholar 

  64. Swihart M (2003) Curr Opin Colloid Interface Sci 8:127

    CAS  Google Scholar 

  65. Gracia-Pinilla M, Perez-Tijerina E, Garcia J, Fernandez-Navarro C, Tlahuice-Flores A, Mejia-Rosales S, Montejano-Carrizales J, Yacaman M (2008) J Phys Chem C 112:13492

    CAS  Google Scholar 

  66. Doye JPK, Hendy SC (2003) Eur Phys J D 22:99

    CAS  Google Scholar 

  67. DeHeer WA (1993) Rev Mod Phys 65:611

    CAS  Google Scholar 

  68. Knight WD, Clemenger K, Heer WAD, Saunders WA, Chou MY, Cohen ML (1984) Phys Rev Lett 52:2141

    CAS  Google Scholar 

  69. Li Z, Juan J, Chen Y, Palmer RE, Wilcoxon JP (2005) Appl Phys Lett 87:243103

    Google Scholar 

  70. Langlois C, Wang Z, Ricolleau PDC, Li Z (2010) J Phys-Conf Ser 241:012043

    Google Scholar 

  71. Li Z, Young N, Vece MD, Palomba S, Palmer R, Bleloch A, Curley B, Johnston R, Jiang J, Yuan J (2008) Nature 451:46

    CAS  Google Scholar 

  72. Langlois C, Oikawa T, Bayle-Guillemaud P, Ricolleau C (2008) J Nanopart Res 10:997

    CAS  Google Scholar 

  73. Langlois C, Alloyeau D, Bouar YL, Loiseau A, Oikawa T, Mottet C, Ricolleau C (2008) Faraday Discussion 138:375

    CAS  Google Scholar 

  74. Mejia-Rosales S, Fernandez-Navarro C, Perez-Tijerina E, Blom D, Allard L, Yacaman M (2007) J Phys Chem C 111:1256

    CAS  Google Scholar 

  75. Olmos-Asar J, Rapallo A, Mariscal M (2011) Phys Chem Chem Phys 13:6500

    CAS  Google Scholar 

  76. Gupta RP (1981) Phys Rev B 23:6265

    CAS  Google Scholar 

  77. Rosato V, Guillopé M, Legrand B (1989) Philos Mag A 59:321

    Google Scholar 

  78. Sutton A, Chen J (1990) Philos Mag Lett 61:139

    Google Scholar 

  79. Foiles S, Baskes M, Daw M (1986) Phys Rev B 33:12

    Google Scholar 

  80. Alloyeau D, Ricolleau C, Mottet C, Oikawa T, Langlois C, Bouar YL, Braidy N, Loiseau A (2009) Nat Mater 8:940

    CAS  Google Scholar 

  81. Gaston N, Paulus B (2007) Phys Rev B 76:214116

    Google Scholar 

  82. Durante N, Fortunelli A, Broyer M, Stener M (2011) J Phys Chem C 115:6277

    CAS  Google Scholar 

  83. Barcaro G, Fortunelli A, Polak M, Rubinovich L (2011) Nano Lett 11:1766

    CAS  Google Scholar 

  84. Granqvist C, Buhrman R (1976) J Appl Phys 47:2200

    CAS  Google Scholar 

  85. Yatsuya S, Kasukabe S, Uyeda R (1973) Jpn J Appl Phys 12:1675

    CAS  Google Scholar 

  86. Kimoto K, Kamiya Y, Nonoyama M, Uyeda R (1963) Jpn J Appl Phys 2:702

    CAS  Google Scholar 

  87. Zachariah M, Carrier M, Aeresol J (1999) Science 30:1139

    CAS  Google Scholar 

  88. Lummen N, Krasha T (2007) Model Simul Mater Sci Eng 15:319

    Google Scholar 

  89. Lehtinen K, Zachariah M, Aerosol J (2002) Science 33:357

    CAS  Google Scholar 

  90. Ding F, Rosen A, Bolton K (2004) Phys Rev B 70:075416

    Google Scholar 

  91. Lummen N, Kraska T (2005) Phys Rev B 71:205403

    Google Scholar 

  92. Li G, Wang Q, Liu T, Wang K, He J, Cluster J (2010) Science 21:45

    CAS  Google Scholar 

  93. Lummen N, Kraska T (2007) Eur Phys J D 41:247

    Google Scholar 

  94. Mariscal M, Dassie S, Leiva E (2005) J Chem Phys 123:184505

    Google Scholar 

  95. Mariscal M, Oldani N, Dassie S, Leiva E (2008) Faraday Discussion 136:6

    Google Scholar 

  96. Stillinger F, Weber T (1985) Phys Rev B 31:5262

    CAS  Google Scholar 

  97. Zacarias AG, Castro M, Tour JM, Seminario JM (1999) J Phys Chem A 103:7692

    CAS  Google Scholar 

  98. Baletto F, Mottet C, Ferrando R (2000) Phys Rev Lett 84:5544

    CAS  Google Scholar 

  99. Baletto F, Mottet C, Ferrando R (2000) Surf Sci 446:31

    CAS  Google Scholar 

  100. Rossi G, Schiappelli G, Ferrando R (2009) J Comput Theor Nanosci 6:841

    CAS  Google Scholar 

  101. Anderson JB, Fenn JB (1985) Phys Fluids 8:780

    Google Scholar 

  102. Frenkel D, Smit B (1996) Understanding molecular simulations. Academic, London

    Google Scholar 

  103. Reinhard D, Hall BD, Ugarte D, Monot R (1997) Phys Rev B 55:7868

    CAS  Google Scholar 

  104. Reinhard D, Hall BD, Berthoud P, Valkealahti S, Monot R (1998) Phys Rev B 58:4917

    CAS  Google Scholar 

  105. Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C (2002) J Chem Phys 116:3856

    CAS  Google Scholar 

  106. Baletto F, Mottet C, and Ferrando R (2002) Chem Phys Lett 354:82–87

    CAS  Google Scholar 

  107. Shibuta Y, Suzuki T (2011) Chem Phys Lett 502:82

    CAS  Google Scholar 

  108. VanHoang V, Odagaki T (2008) Philos Mag 88:1461

    Google Scholar 

  109. Barnard A, Lin X, Curtis L (2005) J Phys Chem B 109:24465

    CAS  Google Scholar 

  110. Chen F, Johnston R (2008) ACS Nano 2:165

    CAS  Google Scholar 

  111. Lobato I, Rojas J, Landauro C, Torres J (2009) J Phys-Cond Matter 21:055301

    CAS  Google Scholar 

  112. Mayoral A, Estrada-Salas HBR, Vazquez-Duran A, Jose-Yacaman M (2010) Nanoscale 2:335

    CAS  Google Scholar 

  113. Lindemann F (1910) Z Phys 11:609

    CAS  Google Scholar 

  114. Faken D, Jonsson H (1994) Comput Mater Sci 2:279

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Baletto .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baletto, F. (2013). Modelling Janus Nanoparticles. In: Metal Clusters and Nanoalloys. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3643-0_8

Download citation

Publish with us

Policies and ethics