Skip to main content

Density-Functional Theory of Free and Supported Metal Nanoclusters and Nanoalloys

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Metal nanoclusters and nanoalloys (i.e., pure or mixed metallic aggregates of dimensions ranging between 1 and 100 nm) are the subject of great interest in basic science as well as in current technology where they find many applications for their unique properties: from chemical sensing (artificial noses) to heterogeneous catalysis, from magnetic recording to opto-electronic devices. First-principles theoretical approaches (i.e., approaches based on an explicit description of the many-electron wave function) have proved able to describe with good accuracy the complexities of the chemical bond in such systems, but their application is limited by the involved computational effort, rapidly increasing as a function of the size of the system. Among first-principles approaches, density-functional theory (DFT) is most often employed, as it currently represents the best compromise between accuracy and computational effort. Despite the inherent demands of DFT calculations, contemporary advances both in methods and hardware are continuously extending the range of systems to which these approaches can be successfully applied using available computational resources, and nowadays electronic structure simulations are routinely conducted using one of the several black-box packages available. These efforts have brought about a wealth of basic knowledge on metal nanoclusters and nanoalloys, furnishing a deeper—sometimes novel—interpretation of experiments and significantly increasing our understanding of these systems. Many specific features of the metallic bond at the nanoscale have been highlighted, especially in the range of sub-nanometer to few-nanometer particles. Exotic morphologies and unusual structural arrangements have been rationalized and their link to peculiar properties of metal particles have been proposed. In this chapter, after a brief introduction to the basics of DFT (and other wave function approaches for comparison), examples of first-principles predictive computational science in the field of the structure of metal nanoclusters and nanoalloys will be reviewed with the aim of providing some understanding of basic concepts and of present capabilities and limitations. The form of the presentation will be rigorous—yet hopefully accessible to nonexperts (students and experimentalists alike) via the extensive use of pictorial representations. Remarks on future perspectives in this field will conclude the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abrikosov AI (2008) Rep Progr Phys 71:046501

    Google Scholar 

  2. Ahlrichs R, Elliott SD (1999) Phys Chem Chem Phys 1:13

    CAS  Google Scholar 

  3. Akola J, Walter M, Whetten RL, Hakkinen H, Grönbeck H (2008) J Am Chem Soc 130:3756

    CAS  Google Scholar 

  4. Altieri S, Finazzi M, Hsieh HH, Havekort MW, Lin HJ, Chen CT, Frabboni S, Gazzardi GC, Rot A, Valeri S (2009) Phys Rev B 79:174431

    Google Scholar 

  5. Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943

    CAS  Google Scholar 

  6. Aprà E, Ferrando R, Fortunelli A (2006) Phys Rev B 73:205414

    Google Scholar 

  7. Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C (2002) J Chem Phys 116:3856

    CAS  Google Scholar 

  8. Barcaro G, Fortunelli A (2005) J Chem Theory Comput 1:972

    CAS  Google Scholar 

  9. Barcaro G, Fortunelli A, Nita F, Ferrando R (2005) Phys Rev Lett 95:246103

    CAS  Google Scholar 

  10. Barcaro G, Fortunelli A, Rossi G, Nita F, Ferrando R (2006) J Phys Chem B 110:23197

    CAS  Google Scholar 

  11. Barcaro G, Fortunelli A (2006) J Phys Chem B 110:21021

    CAS  Google Scholar 

  12. Barcaro G, Aprà E, Fortunelli A (2007) Chem Eur J 13:6408

    Google Scholar 

  13. Barcaro G, Fortunelli A (2007) J Phys Chem C 111:11384

    CAS  Google Scholar 

  14. Barcaro G, Fortunelli A (2007) Phys Rev B 76:165412

    Google Scholar 

  15. Barcaro G, Fortunelli A, Rossi G, Nita F, Ferrando R (2007) Phys Rev Lett 98:156101

    CAS  Google Scholar 

  16. Barcaro G, Causà M, Fortunelli A (2007) Theor Chem Acc 118:807

    CAS  Google Scholar 

  17. Barcaro G, Fortunelli A (2007) New J Phys 9:22

    Google Scholar 

  18. Barcaro G, Fortunelli A (2009) Theor Chem Acc 123:317

    CAS  Google Scholar 

  19. Barcaro G, Thomas IO, Fortunelli A (2010) J Chem Phys 132:124703

    Google Scholar 

  20. Barcaro G, Fortunelli A, Polak M, Rubinovich L (2011) Nano Lett 11:1766

    CAS  Google Scholar 

  21. Barcaro G, Sementa L, Negreiros F, Ferrando R, Fortunelli A (2011) Nano Lett 11:5542

    CAS  Google Scholar 

  22. Barone V, Bencini A, Cossi M, Di Matteo A, Mattesini M, Totti F (1998) J Am Chem Soc 120:7069

    CAS  Google Scholar 

  23. Barth C, Henry CR (2003) Phys Rev Lett 91:196102

    Google Scholar 

  24. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  25. Biswas A, Siegel D, Seidman DN (2010) Phys Rev Lett 105:076102

    Google Scholar 

  26. Bonnemann H, Richards RM (2001) Eur J Inorg Chem 2455

    Google Scholar 

  27. Booth GH, Alavi A (2010) J Chem Phys 132:174104

    Google Scholar 

  28. Paz-Borbon LO, Mortimer-Jones TV, Johnston RL, Posada-Amarillas A, Barcaro G, Fortunelli A (2007) Phys Chem Chem Phys 9:5202

    CAS  Google Scholar 

  29. Paz-Borbon LO, Johnston RL, Barcaro G, Fortunelli A (2007) J Phys Chem C 111:2936

    CAS  Google Scholar 

  30. Paz-Borbon LO, Johnston RL, Barcaro G, Fortunelli A (2009) Eur Phys J D 52:131

    CAS  Google Scholar 

  31. Paz-Borbon LO, Barcaro G, Fortunelli A, Levchenko SV (2012) Phys Rev B 85:155409

    Google Scholar 

  32. Born M, Oppenheimer JR (1927) Ann Phys 84:457

    CAS  Google Scholar 

  33. Broyer M, Cottancin E, Lermé J, Pellarin M, Del Fatti N, Valle F, Burgin J, Guillon C, Langot P (2008) Faraday Discuss 138:137

    CAS  Google Scholar 

  34. Brune H, Giovannini M, Bromann K, Kern K (1998) Nature 394:451

    CAS  Google Scholar 

  35. Car R, Parrinello M (1985) Phys Rev Lett 55:2471

    CAS  Google Scholar 

  36. Causà M, Colle R, Dovesi R, Fortunelli A, Pisani C (1988) Phys Scripta 38:194

    Google Scholar 

  37. Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Nano Lett 7:1947

    CAS  Google Scholar 

  38. Chen MS, Goodman DW (2007) Top Catal 44:41

    Google Scholar 

  39. Chiesa M, Paganini MC, Giamello E, Murphy DM, Di Valentin C, Pacchioni G (2006) Acc Chem Res 39:861

    CAS  Google Scholar 

  40. Claridge SA, Castleman AW Jr., Khanna SN, Murray CB, Sen A, Weiss PS (2009) ACS Nano 3

    Google Scholar 

  41. Cococcioni M, de Gironcoli S (2005) Phys Rev B 71:035105

    Google Scholar 

  42. Cohen-Tannoudji C, Diu B, Laloe F (2006) Quantum mechanics. Wiley-Interscience, Paris

    Google Scholar 

  43. Daniel C, Full J, Gonzalez L, Lupulescu C, Manz J, Merli A, Vajda S, Woste L (2010) Science 299:536

    Google Scholar 

  44. deHeer WA (1993) Rev Mod Phys 65:611

    Google Scholar 

  45. del Campo JM, Köster AM (2008) J Chem Phys 129:024107

    Google Scholar 

  46. Dirac PAM (1928) Proc R Soc 117:610

    Google Scholar 

  47. Dirac PAM (1930) Proc Cambridge Phil Soc 26:376

    CAS  Google Scholar 

  48. Dovesi R, Saunders VR, Roetti R, Orlando R, Zicovich-Wilson M, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’arco P, Llunel M CRYSTAL06. www.crystal.unito.it

  49. Dunlap BI, Rosch N, Trickey SB (2010) Mol Phys 108:3167

    CAS  Google Scholar 

  50. Durante N, Fortunelli A, Broyer M, Stener M (2011) J Phys Chem C 115:6277

    CAS  Google Scholar 

  51. Durante N, Barcaro G, Fortunelli A, Broyer M, Stener M in preparation

    Google Scholar 

  52. Ertl G, Freund HJ (1999) Phys Today 52:32

    CAS  Google Scholar 

  53. Ferrando R, Fortunelli A, Rossi G (2005) Phys Rev B 72:085449

    Google Scholar 

  54. Ferrando R, Fortunelli A, Johnston RL (2008) Phys Chem Chem Phys 10:640

    CAS  Google Scholar 

  55. Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108:845

    CAS  Google Scholar 

  56. Ferrando R, Rossi G, Nita F, Barcaro G, Fortunelli A (2008) ACSNano 2:1849

    CAS  Google Scholar 

  57. Ferrando R, Fortunelli A (2009) J Phys Condens Matter 21:264001

    Google Scholar 

  58. Fortunelli A, Salvetti O (1991) J Comp Chem 12:36

    CAS  Google Scholar 

  59. Fortunelli A, Salvetti O (1991) Chem Phys Lett 186:372

    CAS  Google Scholar 

  60. Fortunelli A, Salvetti O, Villani G (1991) Surf Sci 244:355

    CAS  Google Scholar 

  61. Fortunelli A, Selmi M (1994) Chem Phys Lett 223:390

    CAS  Google Scholar 

  62. Fortunelli A, Velasco AM (1999) J Mol Struct (THEOCHEM) 487:251

    CAS  Google Scholar 

  63. Apra E, Fortunelli A (2000) J Mol Struct 501–502:251

    Google Scholar 

  64. Frank FC, Kasper JS (1959) Acta Crystallogr 12:483

    CAS  Google Scholar 

  65. Freund HJ (2002) Surf Sci 500:271

    CAS  Google Scholar 

  66. Freund LB, Suresh S (2003) Thin film materials: stress, defect formation and surface evolution. Cambridge University Press, Cambridge

    Google Scholar 

  67. Freund HJ, Pacchioni G (2008) Chem Soc Rev 37:2224

    CAS  Google Scholar 

  68. Gavioli L, Cavaliere E, Agnoli S, Barcaro G, Fortunelli A, Granozzi G (2011) Progr Surf Sci 86:59

    CAS  Google Scholar 

  69. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G, Cococcioni M, Dabo I, Dal Corso A, De Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys Condens Matter 21:395502

    Google Scholar 

  70. Goedecker S (1999) Rev Mod Phys 71:1085

    CAS  Google Scholar 

  71. Goniakowski J, Jelea A, Mottet C, Barcaro G, Fortunelli A, Kuntová Z, Nita F, Levi AC, Rossi G, Ferrando R (2009) J Chem Phys 130:174703

    Google Scholar 

  72. Grimme S (2006) J Comput Chem 27:1787

    CAS  Google Scholar 

  73. Haas G, Menck A, Brune H, Barth JV, Venables JA, Kern K (2000) Phys Rev B 61:11105

    CAS  Google Scholar 

  74. Haberlen OD, Chung SC, Stener M, Rosch N (1997) J Chem Phys 106:5189

    Google Scholar 

  75. Hakkinen H (2008) Chem Soc Rev 37:1847

    Google Scholar 

  76. Haunschild R, Scuseria GE (2010) J Chem Phys 132:224106

    Google Scholar 

  77. Heiz U, Landman U (eds) (2007) Nanocatalysis series: nanoscience and technology. Springer, New York

    Google Scholar 

  78. Henry CR (2005) Prog Surf Sci 80:92

    CAS  Google Scholar 

  79. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331

    CAS  Google Scholar 

  80. Hohenberg P, Kohn W (1964) Phys Rev 136:864B

    Google Scholar 

  81. Honeycutt JD, Andersen HC (1987) J Phys Chem 91:4950

    CAS  Google Scholar 

  82. Huang C, Pavone M, Carter EA (2011) J Chem Phys 134:154110

    Google Scholar 

  83. Hubbard PS (1961) Rev Mod Phys 33:249

    CAS  Google Scholar 

  84. Hutchings GJ, Haruta M (2005) Appl Catal A 291:1

    CAS  Google Scholar 

  85. Jellinek J, Krissinel EB (1996) Chem Phys Lett 258:283

    CAS  Google Scholar 

  86. Johnston RL (2003) Dalton Trans 22:4193

    Google Scholar 

  87. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    Google Scholar 

  88. Kohn W, Sham LJ (1965) Phys Rev 140:1133A

    Google Scholar 

  89. Kokalj A (2003) Comp Mat Sci 28:155

    CAS  Google Scholar 

  90. Lee C, Barabasi AL (1998) Appl Phys Lett 73:2651

    CAS  Google Scholar 

  91. Li Z, Scheraga HA (1987) Proc Natl Acad Sci USA 84:6611

    CAS  Google Scholar 

  92. Libuda J, Freund HJ (2005) Surf Sci Rep 57:157

    CAS  Google Scholar 

  93. Lin X, Nilius N, Freund HJ, Walter M, Frondelius P, Honkala K, Hakkinen H (2009) Phys Rev Lett 102:206801

    CAS  Google Scholar 

  94. Lopez N, Illas F, Rosch N, Pacchioni G (1999) J Chem Phys 110:4873

    CAS  Google Scholar 

  95. Mahan GD (2008) Quantum mechanics in a nutshell. Princeton University Press, Princeton

    Google Scholar 

  96. March NH, Stoddard JC (1968) Rep Prog Phys 31:53

    Google Scholar 

  97. Marks LD (1984) Philos Mag A 49:813

    Google Scholar 

  98. Matthey D, Wang JG, Wendt S, Matthiesen J, Schaub R, Laegsgaard E, Hammer B, Besenbacher F (2007) Science 315:1692

    CAS  Google Scholar 

  99. Matveev AV, Neyman K, Yudanov I, Rosch N (1999) Surf Sci 426:123

    CAS  Google Scholar 

  100. McWeeny R, Sutcliffe BT (1969) Methods of molecular quantum mechanics. Academic Press, London

    Google Scholar 

  101. McWeeny R (1980) Coulson’s valence. Oxford University Press, Oxford

    Google Scholar 

  102. Mills G, Jonsson H (1994) Phys Rev Lett 72:1124

    CAS  Google Scholar 

  103. Molina LM, Hammer B (2004) Phys Rev B 69:155424

    Google Scholar 

  104. Molina LM, Hammer B (2005) Appl Catal A 291:21

    CAS  Google Scholar 

  105. Molina LM, Lee S, Fortunelli A, Lee B, Seifert S, Winans RE, Elam JW, Pellin MJ, Barke I, von Oeynhausen V, Lei Y, Meyer RJ, Alonso JA, Rodriguez AF, Kleibert A, Giorgio S, Henry CR, Meiwes-Broer KH, Vajda S (2011) Cat Today 160:116

    CAS  Google Scholar 

  106. Moseler M, Hakkinen H, Landman U (2002) Phys Rev Lett 89:176103

    CAS  Google Scholar 

  107. Musolino V, Selloni A, Car R (1999) Phys Rev Lett 83:3242

    CAS  Google Scholar 

  108. Neyman KM, Inntam C, Matveev AV, Nasluzov VA, Rosch N (2005) J Am Chem Soc 127:11652

    CAS  Google Scholar 

  109. Neyman KM, Lim KH, Chen ZX, Moskaleva LV, Bayer A, Reindi A, Borgmann D, Denecke R, Steinruck HP, Rosch N (2007) Phys Chem Chem Phys 9:3470

    CAS  Google Scholar 

  110. Olivier S, Conte R, Fortunelli A (2008) Phys Rev B 77:054104

    Google Scholar 

  111. Olsen RA, Kroes GJ, Henkelman G, Arnaldsson A, Jonsson H (2004) J Chem Phys 121:9776

    CAS  Google Scholar 

  112. Onida G, Reining L, Rubio A (2002) Rev Mod Phys 74:601

    CAS  Google Scholar 

  113. Pacchioni G, Giordano L, Baistrocchi M (2005) Phys Rev Lett 94:226104

    Google Scholar 

  114. Parker SC, Campbell CT (2007) Top Catal 44:3

    CAS  Google Scholar 

  115. Pauling L (1960) The nature of the chemical bond. Cornell University Press, New York

    Google Scholar 

  116. Pauwels B, Van Tendeloo G, Bouwen W, Theil Kuhn L, Lievens P, Lei H, Hou M (2000) Phys Rev B 62:10383

    Google Scholar 

  117. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    CAS  Google Scholar 

  118. Perdew JP (1985) Phys Rev Lett 55:1665

    CAS  Google Scholar 

  119. Perdew JP, Yue W (1986) Phys Rev B 33:8800

    Google Scholar 

  120. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    CAS  Google Scholar 

  121. Perdew JP, Ruzsinszky A, Tao J, Staroverov V, Scuseria G, Csonka G (2005) J Chem Phys 123:062201

    Google Scholar 

  122. Pettifor DG, Finnis MW, Nguyen-Manh D, Murdick DA, Zhou XW, Wadley HNG (2004) Mat Sci Eng A 365:2

    Google Scholar 

  123. Pileni MP, (2003) C R Chimie 6:965

    CAS  Google Scholar 

  124. Polak M and Rubinovich L (2000) Surf Sci Rep 38:127

    CAS  Google Scholar 

  125. Pyykkö P (2004) Angew Chem Int Ed 43:4412

    Google Scholar 

  126. Renaud G, Lazzari R, Revenant C, Barbier A, Noblet M, Ulrich O, Leroy F, Jupille J, Borensztein Y, Henry CR, Deville JP, Scheurer F, Mane-Mane J, Fruchart O (2003) Science 300:1416

    CAS  Google Scholar 

  127. Reuter K, Scheffler M (2006) Phys Rev B 73:045433

    Google Scholar 

  128. Ricci D, Bongiorno A, Pacchioni G, Landman U (2006) Phys Rev Lett 97:036106

    Google Scholar 

  129. Rossi G, Rapallo A, Mottet C, Fortunelli A, Baletto F, Ferrando R (2004) Phys Rev Lett 93:105503

    CAS  Google Scholar 

  130. Sahimi M, Hamzehpour H (2010) Comp Sci Eng 12:74

    Google Scholar 

  131. Schimka L, Harl J, Kresse G (2011) J Chem Phys 134:024116

    Google Scholar 

  132. Schrödinger E (1926) Phys Rev 28:1049

    Google Scholar 

  133. Scuseria GE (1999) J Phys Chem A 103:4782

    CAS  Google Scholar 

  134. Sementa L, Barcaro G, Negreiros F, Thomas IO, Netzer F, Ferrari AM, Fortunelli A (2012) J Chem Theory Comput 8:629

    CAS  Google Scholar 

  135. Shoemaker JR, Burggraf LW (1999) J Phys Chem A 103:3245

    CAS  Google Scholar 

  136. Slater JC (1972) Statistical exchange-correlation in the self-consistent field. In: Lowdin PO (ed) Advances in quantum chemistry. Academic Press, New York, p. 1

    Google Scholar 

  137. Stillinger FH, Weber TA (1984) Science 225:983

    CAS  Google Scholar 

  138. Stillinger FH (1995) Science 267:1935

    CAS  Google Scholar 

  139. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357

    CAS  Google Scholar 

  140. Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover Publications, United States

    Google Scholar 

  141. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Science 322:932

    CAS  Google Scholar 

  142. Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005

    Google Scholar 

  143. Tran F, Blaha P (2009) Phys Rev Lett 102:226401

    Google Scholar 

  144. Velev OD, Gupta S (2009) Adv Mater 21:1897

    CAS  Google Scholar 

  145. Voter AF, Montalenti F, Germann TC (2002) Ann Rev Mater Res 32:321

    CAS  Google Scholar 

  146. Wales DJ, Doye JPK (1997) J Phys Chem A 101:5111

    CAS  Google Scholar 

  147. Wales DJ, Scheraga HA (1999) Science 285:1368

    CAS  Google Scholar 

  148. Wales DJ (2004) Energy landscapes: applications to clusters, biomolecules and glasses. Cambridge University Press, Cambridge

    Google Scholar 

  149. Wang L, Shi X, Kariuki NN, Schadt M, Wang GR, Rendeng Q, Choi J, Luo J, Lu S, Zhong CJ (2007) J Am Chem Soc 129:2161

    CAS  Google Scholar 

  150. Weigend F, Kattannek M, Ahlrichs R (2009) J Chem Phys 130:164106

    Google Scholar 

  151. West P, Johnston RL, Barcaro G, Fortunelli A (2010) J Phys Chem C 114:19678

    CAS  Google Scholar 

  152. Worz AS, Judai K, Abbet S, Heiz U (2003) J Am Chem Soc 125:7964

    Google Scholar 

  153. Xu LJ, Henkelman G, Campbell CT, Jonsson H (2005) Phys Rev Lett 95:146103

    Google Scholar 

  154. Yacaman MJ, Ascencio JA, Tehuacanero S, Marin M (2002) Top Catal 18:167

    CAS  Google Scholar 

  155. Yulikov M, Sterrer M, Heyde M, Rust HP, Risse T, Freund HJ, Pacchioni G, Scagnelli A (2006) Phys Rev Lett 96:146804

    Google Scholar 

Download references

Acknowledgments

Financial support from the Italian CNR for the project SSA-TMN within the framework of the ESF EUROCORES SONS, and from European Community Sixth and Seventh Framework Programme for the projects GSOMEN (No. NMP4-CT-2004–001594) and SEPON (No. ERC-2008-AdG-227457) are gratefully acknowledged. Many of the DFT calculations here described were performed at the CINECA Supercomputing Center within an agreement with Italian CNR, and also at the CASPUR Supercomputing Center. The authors are indebted to Riccardo Ferrando, Giulia Rossi, Edoardo Aprà, Roy. L. Johnston, Lauro Oliver Paz-Borbon, Paul S. West, Francesca Baletto, Christine Mottet, Mauro Causà, Gaetano Granozzi, Claude Henry, Luca Gavioli, Stefan Vajda, Falko Netzer, Fabio R. Negreiros, Luca Sementa, and Iorwerth O. Thomas for very stimulating collaborations and/or many interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Fortunelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fortunelli, A., Barcaro, G. (2013). Density-Functional Theory of Free and Supported Metal Nanoclusters and Nanoalloys. In: Metal Clusters and Nanoalloys. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3643-0_2

Download citation

Publish with us

Policies and ethics