Phosphorylation of Mammalian Cytochrome c and Cytochrome c Oxidase in the Regulation of Cell Destiny: Respiration, Apoptosis, and Human Disease

  • Maik Hüttemann
  • Icksoo Lee
  • Lawrence I. Grossman
  • Jeffrey W. Doan
  • Thomas H. Sanderson
Chapter
Part of the Advances in Experimental Medicine and Biology book series (volume 748)

Abstract

The mitochondrial oxidative phosphorylation (OxPhos) system not only generates the vast majority of cellular energy, but is also involved in the generation of reactive oxygen species (ROS), and apoptosis. Cytochrome c (Cytc) and cytochrome c oxidase (COX) represent the terminal step of the electron transport chain (ETC), the proposed rate-limiting reaction in mammals. Cytc and COX show unique regulatory features including allosteric regulation, isoform expression, and regulation through cell signaling pathways. This chapter focuses on the latter and discusses all mapped phosphorylation sites based on the crystal structures of COX and Cytc. Several signaling pathways have been identified that target COX including protein kinase A and C, receptor tyrosine kinase, and inflammatory signaling. In addition, four phosphorylation sites have been mapped on Cytc with potentially large implications due to its multiple functions including apoptosis, a pathway that is overactive in stressed cells but inactive in cancer. The role of COX and Cytc phosphorylation is reviewed in a human disease context, including cancer, inflammation, sepsis, asthma, and ischemia/reperfusion injury as seen in myocardial infarction and ischemic stroke.

Keywords

Ischemia Tyrosine Respiration Pancreatitis Vanadate 

Notes

Acknowledgements

This work was supported by grant GM089900 from the National Institutes of Health, a Department of Defence USAMRAA National Oncogenomic and Molecular Imaging Center contract through the Karmanos Cancer Institute, Detroit, the Center for Molecular Medicine and Genetics, and the Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit.

References

  1. Acin-Perez R, Bayona-Bafaluy MP, Bueno M, Machicado C, Fernandez-Silva P, Perez-Martos A, Montoya J, Lopez-Perez MJ, Sancho J, Enriquez JA (2003) An intragenic suppressor in the cytochrome c oxidase I gene of mouse mitochondrial DNA. Hum Mol Genet 12:329–339PubMedGoogle Scholar
  2. Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metabolism 9:265–276PubMedGoogle Scholar
  3. Arnold S, Goglia F, Kadenbach B (1998) 3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem 252:325–330PubMedGoogle Scholar
  4. Aronowski J, Strong R, Grotta JC (1997) Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab 17:1048–1056PubMedGoogle Scholar
  5. Astiz M, Rackow EC, Weil MH, Schumer W (1988) Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock 26:311–320PubMedGoogle Scholar
  6. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315PubMedGoogle Scholar
  7. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550PubMedGoogle Scholar
  8. Baudouin SV, Saunders D, Tiangyou W, Elson JL, Poynter J, Pyle A, Keers S, Turnbull DM, Howell N, Chinnery PF (2005) Mitochondrial DNA and survival after sepsis: a prospective study. Lancet 366:2118–2121PubMedGoogle Scholar
  9. Beauchemin AM, Gottlieb B, Beitel LK, Elhaji YA, Pinsky L, Trifiro MA (2001) Cytochrome c oxidase subunit Vb interacts with human androgen receptor: a potential mechanism for neurotoxicity in spinobulbar muscular atrophy. Brain Res Bull 56:285–297PubMedGoogle Scholar
  10. Bender E, Kadenbach B (2000) The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466:130–134PubMedGoogle Scholar
  11. Boerner JL, Demory ML, Silva C, Parsons SJ (2004) Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Cell Biol 24:7059–7071PubMedGoogle Scholar
  12. Budas GR, Churchill EN, Disatnik MH, Sun L, Mochly-Rosen D (2010) Mitochondrial import of PKCepsilon is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury. Cardiovasc Res 88:83–92PubMedGoogle Scholar
  13. Callahan LA, Supinski GS (2005) Downregulation of diaphragm electron transport chain and glycolytic enzyme gene expression in sepsis. J Appl Physiol 99:1120–1126PubMedGoogle Scholar
  14. Campbell CA, Przyklenk K, Kloner RA (1986) Infarct size reduction: a review of the clinical trials. J Clin Pharmacol 26:317–329PubMedGoogle Scholar
  15. Churchill EN, Szweda LI (2005) Translocation of deltaPKC to mitochondria during cardiac reperfusion enhances superoxide anion production and induces loss in mitochondrial function. Arch Biochem Biophys 439:194–199PubMedGoogle Scholar
  16. Dalmonte ME, Forte E, Genova ML, Giuffre A, Sarti P, Lenaz G (2009) Control of respiration by cytochrome c oxidase in intact cells: role of the membrane potential. J Biol Chem 284:32331–32335PubMedGoogle Scholar
  17. Della-Morte D, Raval AP, Dave KR, Lin HW, Perez-Pinzon MA (2011) Post-ischemic activation of protein kinase C epsilon protects the hippocampus from cerebral ischemic injury via alterations in cerebral blood flow. Neurosci Lett 487:158–162PubMedGoogle Scholar
  18. Demory ML, Boerner JL, Davidson R, Faust W, Miyake T, Lee I, Hüttemann M, Douglas R, Haddad G, Parsons SJ (2009) Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem 284:36592–36604PubMedGoogle Scholar
  19. Dong S, Teng Z, Lu FH, Zhao YJ, Li H, Ren H, Chen H, Pan ZW, Lv YJ, Yang BF, Tian Y, Xu CQ, Zhang WH (2010) Post-conditioning protects cardiomyocytes from apoptosis via PKC(epsilon)-interacting with calcium-sensing receptors to inhibit endo(sarco)plasmic reticulum-mitochondria crosstalk. Mol Cell Biochem 341:195–206PubMedGoogle Scholar
  20. Duvigneau JC, Piskernik C, Haindl S, Kloesch B, Hartl RT, Hüttemann M, Lee I, Ebel T, Moldzio R, Gemeiner M, Redl H, Kozlov AV (2008) A novel endotoxin-induced pathway: upregulation of heme oxygenase 1, accumulation of free iron, and free iron-mediated mitochondrial dysfunction. Lab Invest 88:70–77PubMedGoogle Scholar
  21. Ekholm A, Katsura K, Kristian T, Liu M, Folbergrova J, Siesjo BK (1993) Coupling of cellular energy state and ion homeostasis during recovery following brain ischemia. Brain Res 604:185–191PubMedGoogle Scholar
  22. Fabian RH, DeWitt DS, Kent TA (1995) In vivo detection of superoxide anion production by the brain using a cytochrome c electrode. J Cereb Blood Flow Metab 15:242–247PubMedGoogle Scholar
  23. Fang JK, Prabu SK, Sepuri NB, Raza H, Anandatheerthavarada HK, Galati D, Spear J, Avadhani NG (2007) Site specific phosphorylation of cytochrome c oxidase subunits I, IVi1 and Vb in rabbit hearts subjected to ischemia/reperfusion. FEBS Lett 581:1302–1310PubMedGoogle Scholar
  24. Fellman V, Raivio KO (1997) Reperfusion injury as the mechanism of brain damage after perinatal asphyxia. Pediatr Res 41:599–606PubMedGoogle Scholar
  25. Ferguson-Miller S, Brautigan DL, Margoliash E (1976) Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem 251:1104–1115PubMedGoogle Scholar
  26. Fink MP (2002) Bench-to-bedside review: cytopathic hypoxia. Crit Care 6:491–499PubMedGoogle Scholar
  27. Fiskum G, Rosenthal RE, Vereczki V, Martin E, Hoffman GE, Chinopoulos C, Kowaltowski A (2004) Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J Bioenerg Biomembr 36:347–352PubMedGoogle Scholar
  28. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233PubMedGoogle Scholar
  29. Goldberg E, Sberna D, Wheat TE, Urbanski GJ, Margoliash E (1977) Cytochrome c: immunofluorescent localization of the testis-specific form. Science 196:1010–1012PubMedGoogle Scholar
  30. Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21:11–19PubMedGoogle Scholar
  31. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899PubMedGoogle Scholar
  32. Guo D, Nguyen T, Ogbi M, Tawfik H, Ma G, Yu Q, Caldwell RW, Johnson JA (2007) Protein kinase C-epsilon coimmunoprecipitates with cytochrome oxidase subunit IV and is associated with improved cytochrome-c oxidase activity and cardioprotection. Am J Physiol Heart Circ Physiol 293:H2219–H2230PubMedGoogle Scholar
  33. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513PubMedGoogle Scholar
  34. Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722PubMedGoogle Scholar
  35. Helling S, Vogt S, Rhiel A, Ramzan R, Wen L, Marcus K, Kadenbach B (2008) Phosphorylation and kinetics of mammalian cytochrome c oxidase. Mol Cell Proteomics 7:1714–1724PubMedGoogle Scholar
  36. Hinkle PC, Kumar MA, Resetar A, Harris DL (1991) Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry 30:3576–3582PubMedGoogle Scholar
  37. Hopper RK, Carroll S, Aponte AM, Johnson DT, French S, Shen RF, Witzmann FA, Harris RA, Balaban RS (2006) Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry 45:2524–2536PubMedGoogle Scholar
  38. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150PubMedGoogle Scholar
  39. Hüttemann M, Jaradat S, Grossman LI (2003) Cytochrome c oxidase of mammals contains a testes-specific isoform of subunit VIb – the counterpart to testes-specific cytochrome c? Mol Reprod Dev 66:8–16PubMedGoogle Scholar
  40. Hüttemann M, Lee I, Samavati L, Yu H, Doan JW (2007) Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochim Biophys Acta 1773:1701–1720PubMedGoogle Scholar
  41. Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW (2008) Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr 40:445–456PubMedGoogle Scholar
  42. Hüttemann M, Nantwi KD, Lee I, Liu J, Mohiuddin S, Petrov T (2010) Theophylline treatment improves mitochondrial function after upper cervical spinal cord hemisection. Exp Neurol 223:523–528PubMedGoogle Scholar
  43. Hüttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R, Vogt S, Grossman LI, Doan JW, Marcus K, Lee I (2012) Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta 1817:598–609Google Scholar
  44. Hüttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I (2011) The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis. Mitochondrion 11:369–381PubMedGoogle Scholar
  45. Kagan VE, Bayir HA, Belikova NA, Kapralov O, Tyurina YY, Tyurin VA, Jiang J, Stoyanovsky DA, Wipf P, Kochanek PM, Greenberger JS, Pitt B, Shvedova AA, Borisenko G (2009) Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med 46:1439–1453PubMedGoogle Scholar
  46. Kamp DW, Shacter E, Weitzman SA (2011) Chronic inflammation and cancer: the role of the mitochondria. Oncology 25:400–410, 413Google Scholar
  47. Kim J, Takeuchi H, Lam ST, Turner RR, Wang HJ, Kuo C, Foshag L, Bilchik AJ, Hoon DS (2005) Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 23:2744–2753PubMedGoogle Scholar
  48. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, Luo JL, Karin M (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106PubMedGoogle Scholar
  49. Kirichenko A, Vygodina T, Mkrtchyan HM, Konstantinov A (1998) Specific cation binding site in mammalian cytochrome oxidase. FEBS Lett 423:329–333PubMedGoogle Scholar
  50. Kirichenko AV, Pfitzner U, Ludwig B, Soares CM, Vygodina TV, Konstantinov AA (2005) Cytochrome c oxidase as a calcium binding protein. Studies on the role of a conserved aspartate in helices XI-XII cytoplasmic loop in cation binding. Biochemistry 44:12391–12401PubMedGoogle Scholar
  51. Knab S, Mushak TM, Schmitz-Esser S, Horn M, Haferkamp I (2011) Nucleotide parasitism by Simkania negevensis (Chlamydiae). J Bacteriol 193:225–235PubMedGoogle Scholar
  52. Ko YH, Pan W, Inoue C, Pedersen PL (2002) Signal transduction to mitochondrial ATP synthase: evidence that PDGF-dependent phosphorylation of the delta-subunit occurs in several cell lines, involves tyrosine, and is modulated by lysophosphatidic acid. Mitochondrion 1:339–348PubMedGoogle Scholar
  53. Korshunov SS, Krasnikov BF, Pereverzev MO, Skulachev VP (1999) The antioxidant functions of cytochrome c. FEBS Lett 462:192–198PubMedGoogle Scholar
  54. Kowalczyk JE, Kawalec M, Beresewicz M, Debski J, Dadlez M, Zablocka B (2012) Protein kinase C beta in postischemic brain mitochondria. Mitochondrion 12(1):138–143PubMedGoogle Scholar
  55. Kulbe H, Hagemann T, Szlosarek PW, Balkwill FR, Wilson JL (2005) The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res 65:10355–10362PubMedGoogle Scholar
  56. Lee I, Kadenbach B (2001) Palmitate decreases proton pumping of liver-type cytochrome c oxidase. Eur J Biochem 268:6329–6334PubMedGoogle Scholar
  57. Lee MD, Zentella A, Vine W, Pekala PH, Cerami A (1987) Effect of endotoxin-induced monokines on glucose metabolism in the muscle cell line L6. Proc Natl Acad Sci USA 84:2590–2594PubMedGoogle Scholar
  58. Lee I, Bender E, Kadenbach B (2002) Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Mol Cell Biochem 234–235:63–70PubMedGoogle Scholar
  59. Lee I, Salomon AR, Ficarro S, Mathes I, Lottspeich F, Grossman LI, Hüttemann M (2005) cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J Biol Chem 280:6094–6100PubMedGoogle Scholar
  60. Lee I, Salomon AR, Yu K, Doan JW, Grossman LI, Hüttemann M (2006) New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo. Biochemistry 45:9121–9128PubMedGoogle Scholar
  61. Lee I, Pecinova A, Pecina P, Neel BG, Araki T, Kucherlapati R, Roberts AE, Hüttemann M (2010) A suggested role for mitochondria in Noonan syndrome. Biochim Biophys Acta 1802:275–283PubMedGoogle Scholar
  62. Levy RJ, Vijayasarathy C, Raj NR, Avadhani NG, Deutschman CS (2004) Competitive and noncompetitive inhibition of myocardial cytochrome c oxidase in sepsis. Shock 21:110–114PubMedGoogle Scholar
  63. Liu SS (1999) Cooperation of a “reactive oxygen cycle” with the Q cycle and the proton cycle in the respiratory chain–superoxide generating and cycling mechanisms in mitochondria. J Bioenerg Biomembr 31:367–376PubMedGoogle Scholar
  64. Liu RR, Murphy TH (2009) Reversible cyclosporin A-sensitive mitochondrial depolarization occurs within minutes of stroke onset in mouse somatosensory cortex in vivo: a two-photon imaging study. J Biol Chem 284:36109–36117PubMedGoogle Scholar
  65. Liu Z, Lin H, Ye S, Liu QY, Meng Z, Zhang CM, Xia Y, Margoliash E, Rao Z, Liu XJ (2006) Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis. Proc Natl Acad Sci USA 103:8965–8970PubMedGoogle Scholar
  66. Lorente L, Martin MM, Lopez-Gallardo E, Iceta R, Sole-Violan J, Blanquer J, Labarta L, Diaz C, Jimenez A, Lafuente N, Hernandez M, Mendez F, Medina N, Ferrer-Aguero JM, Ferreres J, Llimiñana MC, Mora ML, Lubillo S, Sanchez-Palacios M, Montoya J, Ruiz-Pesini E (2011) Platelet cytochrome c oxidase activity and quantity in septic patients. Crit Care Med 39:1289–1294PubMedGoogle Scholar
  67. Lu N, Wang W, Liu J, Wong CW (2011) Protein kinase C epsilon affects mitochondrial function through estrogen-related receptor alpha. Cell Signal 23(9):1473–1478PubMedGoogle Scholar
  68. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444PubMedGoogle Scholar
  69. Martinez-Ruiz A, Cadenas S, Lamas S (2011) Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med 51:17–29PubMedGoogle Scholar
  70. Miyazaki T, Neff L, Tanaka S, Horne WC, Baron R (2003) Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol 160:709–718PubMedGoogle Scholar
  71. Neel BG, Gu H, Pao L (2003) The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28:284–293PubMedGoogle Scholar
  72. Ogbi M, Johnson JA (2006) Protein kinase Cε interacts with cytochrome c oxidase subunit IV and enhances cytochrome c oxidase activity in neonatal cardiac myocyte preconditioning. Biochem J 393:191–199PubMedGoogle Scholar
  73. Ogbi M, Chew CS, Pohl J, Stuchlik O, Ogbi S, Johnson JA (2004) Cytochrome c oxidase subunit IV as a marker of protein kinase Cε function in neonatal cardiac myocytes: implications for cytochrome c oxidase activity. Biochem J 382:923–932PubMedGoogle Scholar
  74. Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87:5144–5147PubMedGoogle Scholar
  75. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:ra3PubMedGoogle Scholar
  76. Pacelli C, Latorre D, Cocco T, Capuano F, Kukat C, Seibel P, Villani G (2011) Tight control of mitochondrial membrane potential by cytochrome c oxidase. Mitochondrion 11:334–341PubMedGoogle Scholar
  77. Pang L, Qiu T, Cao X, Wan M (2011) Apoptotic role of TGF-beta mediated by Smad4 mitochondria translocation and cytochrome c oxidase subunit II interaction. Exp Cell Res 317:1608–1620PubMedGoogle Scholar
  78. Pecina P, Borisenko GG, Belikova NA, Tyurina YY, Pecinova A, Lee I, Samhan-Arias AK, Przyklenk K, Kagan VE, Hüttemann M (2010) Phosphomimetic substitution of cytochrome c tyrosine 48 decreases respiration and binding to cardiolipin and abolishes ability to trigger downstream caspase activation. Biochemistry 49:6705–6714PubMedGoogle Scholar
  79. Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22:190–274PubMedGoogle Scholar
  80. Persichini T, Mazzone V, Polticelli F, Moreno S, Venturini G, Clementi E, Colasanti M (2005) Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci Lett 384:254–259PubMedGoogle Scholar
  81. Piantadosi CA, Zhang J (1996) Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27:327–332PubMedGoogle Scholar
  82. Picard M, Taivassalo T, Ritchie D, Wright KJ, Thomas MM, Romestaing C, Hepple RT (2011) Mitochondrial structure and function are disrupted by standard isolation methods. PLoS One 6:e18317PubMedGoogle Scholar
  83. Piccoli C, Scrima R, Boffoli D, Capitanio N (2006) Control by cytochrome c oxidase of the cellular oxidative phosphorylation system depends on the mitochondrial energy state. Biochem J 396:573–583PubMedGoogle Scholar
  84. Prabu SK, Anandatheerthavarada HK, Raza H, Srinivasan S, Spear JF, Avadhani NG (2006) Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia-related injury. J Biol Chem 281:2061–2070PubMedGoogle Scholar
  85. Rakoff-Nahoum S (2006) Why cancer and inflammation? Yale J Biol Med 79:123–130PubMedGoogle Scholar
  86. Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R (2010) The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation – why mitochondria are targets for cancer therapy. Mol Aspects Med 31:145–170PubMedGoogle Scholar
  87. Revelly JP, Tappy L, Martinez A, Bollmann M, Cayeux MC, Berger MM, Chiolero RL (2005) Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med 33:2235–2240PubMedGoogle Scholar
  88. Robb-Gaspers LD, Burnett P, Rutter GA, Denton RM, Rizzuto R, Thomas AP (1998) Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J 17:4987–5000PubMedGoogle Scholar
  89. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J (2011) Heart disease and stroke statistics – 2011 update: a report from the American Heart Association. Circulation 123:e18–e209PubMedGoogle Scholar
  90. Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7:752–758PubMedGoogle Scholar
  91. Ruggieri AJ, Levy RJ, Deutschman CS (2010) Mitochondrial dysfunction and resuscitation in sepsis. Crit Care Clin 26:567–575, x–xiGoogle Scholar
  92. Salvi M, Brunati AM, Bordin L, La Rocca N, Clari G, Toninello A (2002) Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria. Biochim Biophys Acta 1589:181–195PubMedGoogle Scholar
  93. Salvi M, Stringaro A, Brunati AM, Agostinelli E, Arancia G, Clari G, Toninello A (2004) Tyrosine phosphatase activity in mitochondria: presence of Shp-2 phosphatase in mitochondria. Cell Mol Life Sci 61:2393–2404PubMedGoogle Scholar
  94. Samavati L, Lee I, Mathes I, Lottspeich F, Hüttemann M (2008) Tumor necrosis factor α inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem 283:21134–21144PubMedGoogle Scholar
  95. Sanishvili R, Volz KW, Westbrook EM, Margoliash E (1995) The low ionic strength crystal structure of horse cytochrome c at 2.1 Å resolution and comparison with its high ionic strength counterpart. Structure 3:707–716PubMedGoogle Scholar
  96. Sivaraman V, Hausenloy DJ, Kolvekar S, Hayward M, Yap J, Lawrence D, Di Salvo C, Yellon DM (2009) The divergent roles of protein kinase C epsilon and delta in simulated ischaemia-reperfusion injury in human myocardium. J Mol Cell Cardiol 46:758–764PubMedGoogle Scholar
  97. Steenaart NA, Shore GC (1997) Mitochondrial cytochrome c oxidase subunit IV is phosphorylated by an endogenous kinase. FEBS Lett 415:294–298PubMedGoogle Scholar
  98. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29:465–468PubMedGoogle Scholar
  99. Tartaglia M, Gelb BD, Zenker M (2011) Noonan syndrome and clinically related disorders. Best practice & research. J Clin Endocrinol Metab 25:161–179Google Scholar
  100. Thingholm TE, Jorgensen TJ, Jensen ON, Larsen MR (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1:1929–1935PubMedGoogle Scholar
  101. Tilney NL, Guttmann RD (1997) Effects of initial ischemia/reperfusion injury on the transplanted kidney. Transplantation 64:945–947PubMedGoogle Scholar
  102. Tracey KJ, Lowry SF, Fahey TJ, Albert JD, Fong Y, Hesse D, Beutler B, Manogue KR, Calvano S, Wei H, Cerami A, Shires GT (1987) Cachectin/tumor necrosis factor induces lethal shock and stress hormone responses in the dog. Surg Gynecol Obstet 164:415–422PubMedGoogle Scholar
  103. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144PubMedGoogle Scholar
  104. Tsukihara T, Shimokata K, Katayama Y, Shimada H, Muramoto K, Aoyama H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Yao M, Ishimura Y, Yoshikawa S (2003) The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc Natl Acad Sci USA 100:15304–15309PubMedGoogle Scholar
  105. Villani G, Attardi G (1997) In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells. Proc Natl Acad Sci USA 94:1166–1171PubMedGoogle Scholar
  106. Villani G, Greco M, Papa S, Attardi G (1998) Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J Biol Chem 273:31829–31836PubMedGoogle Scholar
  107. Vlessis AA, Widener LL, Bartos D (1990) Effect of peroxide, sodium, and calcium on brain mitochondrial respiration in vitro: potential role in cerebral ischemia and reperfusion. J Neurochem 54:1412–1418PubMedGoogle Scholar
  108. von Ballmoos C, Gennis RB, Adelroth P, Brzezinski P (2011) Kinetic design of the respiratory oxidases. Proc Natl Acad Sci USA 108:11057–11062Google Scholar
  109. von der Hocht I, van Wonderen JH, Hilbers F, Angerer H, MacMillan F, Michel H (2011) Interconversions of P and F intermediates of cytochrome c oxidase from Paracoccus denitrificans. Proc Natl Acad Sci USA 108:3964–3969PubMedGoogle Scholar
  110. Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190:491–500PubMedGoogle Scholar
  111. Wang ZB, Li M, Zhao Y, Xu JX (2003) Cytochrome c is a hydrogen peroxide scavenger in mitochondria. Protein Pept Lett 10:247–253PubMedGoogle Scholar
  112. Warburg O (1956) On the origin of cancer cells. Science 123:309–314PubMedGoogle Scholar
  113. Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Z 152:309–344Google Scholar
  114. Weinberg F, Chandel NS (2009) Mitochondrial metabolism and cancer. Ann N Y Acad Sci 1177:66–73PubMedGoogle Scholar
  115. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788–8793PubMedGoogle Scholar
  116. Welch EJ, Jones BW, Scott JD (2010) Networking with AKAPs: context-dependent regulation of anchored enzymes. Mol Interv 10:86–97PubMedGoogle Scholar
  117. Yang WL, Iacono L, Tang WM, Chin KV (1998) Novel function of the regulatory subunit of protein kinase A: regulation of cytochrome c oxidase activity and cytochrome c release. Biochemistry 37:14175–14180PubMedGoogle Scholar
  118. Yoshikawa S, Muramoto K, Shinzawa-Itoh K (2011) The O2 reduction and proton pumping gate mechanism of bovine heart cytochrome c oxidase. Biochim Biophys Acta 1807:1279–1286PubMedGoogle Scholar
  119. Yu H, Lee I, Salomon AR, Yu K, Hüttemann M (2008a) Mammalian liver cytochrome c is tyrosine-48 phosphorylated in vivo, inhibiting mitochondrial respiration. Biochim Biophys Acta 1777:1066–1071PubMedGoogle Scholar
  120. Yu Q, Nguyen T, Ogbi M, Caldwell RW, Johnson JA (2008b) Differential loss of cytochrome-c oxidase subunits in ischemia-reperfusion injury: exacerbation of COI subunit loss by PKC-epsilon inhibition. Am J Physiol 294:H2637–H2645Google Scholar
  121. Zaidan E, Sims NR (1994) The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat. J Neurochem 63:1812–1819PubMedGoogle Scholar
  122. Zhang Z, Gerstein M (2003) The human genome has 49 cytochrome c pseudogenes, including a relic of a primordial gene that still functions in mouse. Gene 312:61–72PubMedGoogle Scholar
  123. Zhang S, Li H, Yang SJ (2010) Tribulosin protects rat hearts from ischemia/reperfusion injury. Acta Pharmacol Sin 31:671–678PubMedGoogle Scholar
  124. Zhao X, Leon IR, Bak S, Mogensen M, Wrzesinski K, Hojlund K, Jensen ON (2010) Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol Cell Proteomics 10(1):M110.000299PubMedGoogle Scholar
  125. Zweier JL (1988) Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem 263:1353–1357PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Maik Hüttemann
    • 1
    • 2
  • Icksoo Lee
    • 3
  • Lawrence I. Grossman
    • 1
    • 2
  • Jeffrey W. Doan
    • 3
  • Thomas H. Sanderson
    • 4
    • 5
  1. 1.Center for Molecular Medicine and Genetics, and Cardiovascular Research InstituteWayne State University School of MedicineDetroitUSA
  2. 2.Karmanos Cancer InstituteDetroitUSA
  3. 3.Center for Molecular Medicine and GeneticsWayne State University School of MedicineDetroitUSA
  4. 4.Cardiovascular Research InstituteWayne State University School of MedicineDetroitUSA
  5. 5.Department of Emergency MedicineWayne State University School of MedicineDetroitUSA

Personalised recommendations