Skip to main content

Quantum Optical Transistor and Other Devices Based on Nanostructures

  • Chapter
  • First Online:
Quantum Dot Devices

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 13))

  • 2661 Accesses

Abstract

Laser and strong coupling can coexist in a single quantum dot (QD) coupled to nanostructures. This provides an important clue toward the realization of quantum optical devices, such as quantum optical transistor, slow light device, fast light device, or light storage device. In contrast to conventional electronic transistor, a quantum optical transistor uses photons as signal carriers rather than electrons, which has a faster and more powerful transfer efficiency. Under the radiation of a strong pump laser, a signal laser can be amplified or attenuated via passing through a single quantum dot coupled to a photonic crystal (PC) nanocavity system. Such a switching and amplifying behavior can really implement the quantum optical transistor. By simply turning on or off the input pump laser, the amplified or attenuated signal laser can be obtained immediately. Based on this transistor, we further propose a method to measure the vacuum Rabi splitting of exciton in all-optical domain. Besides, we study the light propagation in a coupled QD and nanomechanical resonator (NR) system. We demonstrate that it is possible to achieve the slow light, fast light, and quantum memory for light on demand, which is based on the mechanically induced coherent population oscillation (MICPO) and exciton polaritons. These QD devices offer a route toward the use of all-optical technique to investigate the coupled QD systems and will make contributions to quantum internets and quantum computers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amos, S.W., James, M.R.: Principles of transistor circuits. 9th edn. Elsevier (1969)

    Google Scholar 

  2. Bunis, M., Bunis, S.: Collector’s guide to transistor radios identification and values, collector books publisher, Paducah (1996)

    Google Scholar 

  3. Ooi, C.H.R.: Controlling irreversibility and directionality of light via atomic motion: optical transistor and quantum velocimeter. New J. Phys. 10, 123024 (2008)

    Article  ADS  Google Scholar 

  4. Kalithasan, B., Porsezian, K., Dinda, P.T.: Modulational instability in resonant optical fiber with higher-order dispersion effect. J. Opt. 12, 035210 (2010)

    Article  ADS  Google Scholar 

  5. Zhang, J.J., Wang, Z.L., Liu, J., Chen, S., Liu, G.: Self-assembled nanostructures. Kluwer Academic/Plenum Publishers, NY (2003)

    Google Scholar 

  6. Fu, A., Gu, W.W., Larabell, C., Alivisatos, A.P.: Semiconductor nanocrystals for biological imaging. Curr. Opin. Neurobiol. 15, 568 (2005)

    Article  Google Scholar 

  7. Jabbour, G.E., Doderer, D.: Quantum dot solar cells: the best of both worlds. Nat. Photonics 4, 604 (2010)

    Article  ADS  Google Scholar 

  8. Liu, H.C.: Quantum dot infrered photodetector. Opto-electron. Rev. 11, 1–5 (2003)

    Google Scholar 

  9. Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum dot heterostructures. Wiley, Chichester (1999)

    Google Scholar 

  10. Imamoḡlu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999)

    Article  ADS  Google Scholar 

  11. Heiss, D., Jovanov, V., Caesar, M., Bichler, M., Abstreiter, G., Finley, J.J.: Selective optical charge generation, storage, and readout in a single self-assembled quantum dot. Appl. Phys. Lett. 94, 072108 (2009)

    Article  ADS  Google Scholar 

  12. Kłopotowskia, L., Gorycab, M., Kossackib, P., Kudelski, A., Krebs, O., Wojnara, P., Wojtowicza, T., Karczewskia, G.: Charge storage in self-assembled CdTe quantum dots. J. Phys.: Conf. Ser. 210, 012007 (2010)

    Article  ADS  Google Scholar 

  13. Chang, C.-C., Sharma, Y.D., Kim, Y.-S., Bur, J.A., Shenoi, R.V., Krishna, S., Huang, D., Lin, S.-Y.: A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett. 10, 1704–1709 (2010)

    Article  ADS  Google Scholar 

  14. Wang, H., Zhu, K.D.: Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator. Opt. Express 18, 16175 (2010)

    Article  ADS  Google Scholar 

  15. Wang, H., Zhu, K.D.: Large optical Kerr effect in a nanocrystal complex coupled to a nanomechanical resonator. Europhys. Lett. 92, 47008 (2010)

    Article  ADS  Google Scholar 

  16. Posani, K.T., Tripathi, V., Annamalai, S., Weisse-Bernstein, N.R., Krishna, S., Perahia, R., Crisafulli, O., Painter, O.J.: Nanoscale quantum dot infrared sensors with photonic crystal cavity. Appl. Phys. Lett. 88, 151104 (2006)

    Article  ADS  Google Scholar 

  17. Li, J.J., Zhu, K.D.: A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot. Nanotechnol. 21, 205501 (2010)

    Article  ADS  Google Scholar 

  18. Li, J.J., Zhu, K.D.: An efficient optical knob from slow light to fast light in a coupled nanomechanical resonator-quantum dot system. Opt. Express 17, 19874–19881 (2009)

    Article  ADS  Google Scholar 

  19. Li, J.J., Zhu, K.D.: A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity. Nanotechnology 22, 055202 (2011)

    Article  ADS  Google Scholar 

  20. Li, J.J., Zhu, K.D.: A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum dto system, Appl. Phys. Lett. 94, 063116–063118, 249903 (2009)

    Google Scholar 

  21. Li, J.J., Zhu, K.D.: Quantum memory for light with a quantum dot system coupled to a nanomechanical resonator. Quantum Inf. Comput. 11, 0456–0465 (2011)

    Google Scholar 

  22. Li, J.J., Zhu, K.D.: Mechanical vibration-induced coherent optical spectroscopy in a single quantum dot coupled to a nanomechanical resonator. J. Phys. B 43, 155504 (2010)

    Article  ADS  Google Scholar 

  23. Li, J.J., Zhu, K.D.: Coherent optical spectroscopy due to lattice vibrations in a single quantum dot. Eur. Phys. J. D 59, 305–308 (2010)

    Article  ADS  Google Scholar 

  24. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  25. Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011)

    Article  ADS  Google Scholar 

  26. Safavi-Naeini, A.H., Mayer Alegre, T.P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011)

    Article  ADS  Google Scholar 

  27. Verhagen, E., Deléglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012)

    Article  ADS  Google Scholar 

  28. Hwang, J., Pototschnig, M., Lettow, R., Zumofen, G., Renn, A., Götzinger, S., Sandoghdar, V.A.: Single-molecule optical transistor. Nature 460, 76–80 (2009)

    Article  ADS  Google Scholar 

  29. Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y., Arakawa, Y.: Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system. Nat. Phys. 6, 279–283 (2010)

    Article  Google Scholar 

  30. Mücke, M., Figueroa, E., Bochmann, J., Hahn, C., Murr, K., Ritter, S., Villas-Boas, C.J., Rempe, G.: Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010)

    Article  ADS  Google Scholar 

  31. Faraon, A., Majumdar, A., Kim, H., Petroff, P., Vučković, J.: Fast electrical control of a quantum dot strongly coupled to a nano-resonator. Phy. Rev. Lett. 104, 047402–047405 (2010)

    Article  ADS  Google Scholar 

  32. Chauvin, N., Zinoni, C., Francardi, M., Gerardino, A., Balet, L., Alloing, B., Li, L.H., Fiore, A.: Controlling the charge environment of single quantum dots in a photonic-crystal cavity. Phys. Rev. B 80, 241306–241309(R) (2009)

    Article  ADS  Google Scholar 

  33. Arlandis, J., Centeno, E., Pollès, R., Moreau, A., Campos, J., Gauthier-Lafaye, O., Monmayrant, A.: Mesoscopic self-collimation and slow light in all-positive index layered photonic crystals. Phys. Rev. Lett. 108, 037401 (2012)

    Article  ADS  Google Scholar 

  34. Figotin, A., Vitebskiy, I.: Slow wave phenomena in photonic crystals. Laser Photonics Rev. 5, 201–213 (2011)

    Article  Google Scholar 

  35. Kim, M.-K., Kim, J.-Y., Kang, J.-H., Ahn, B.-H., Lee, Y.-H.: On-demand photonic crystal resonators. Laser Photonics Rev. 5, 479–495 (2011)

    Article  Google Scholar 

  36. Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    Article  ADS  Google Scholar 

  37. Gardiner, C.W., Zoller, P.: Quantum noise. Springer Verlag, Berlin (2005)

    Google Scholar 

  38. Scully, M.O., Zubairy, M.S.: Quantum optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  39. Boyd, R.W.: Nonlinear optics, pp. 313. Academic, Amsterdam (2008)

    Google Scholar 

  40. Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. Lett. 69, 681 (1946)

    Google Scholar 

  41. Duan, L.-M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  42. Safavi-Naeini, A.H., Chan, J., Hill, J.T., Alegre, T.P.M., Krause, A., Painter, O.: Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012)

    Article  ADS  Google Scholar 

  43. Massel, F., Heikkilä, T.T., Pirkkalainen, J.-M., Cho, S.U., Saloniemi, H., Hakonen, P.J., Sillanpää M., A.: Microwave amplification with nanomechanical resonators. Nature 480, 351–354 (2011)

    Article  ADS  Google Scholar 

  44. Bagheri, M., Poot, M., Li, M., Pernice, W.P.H., Tang H., X.: Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nat. Nanotechnol. 6, 726–732 (2011)

    Article  ADS  Google Scholar 

  45. Schmidt, T.L., Børkje, K., Bruder, C., Trauzettel, B.: Detection of qubit-oscillator entanglement in nanoelectromechanical systems. Phys. Rev. Lett. 104, 177205 (2010)

    Article  ADS  Google Scholar 

  46. Fransson, J., Balatsky, A.V., Zhu, J.X.: Dynamical properties of a vibrating molecular quantum dot in a Josephson junction. Phys. Rev. B 81, 155440 (2010)

    Article  ADS  Google Scholar 

  47. Zippilli, S., Bachtold, A., Morigi, G.: Ground-state-cooling vibrations of suspended carbon nanotubes with constant electron current. Phys. Rev. B 81, 205408 (2010)

    Article  ADS  Google Scholar 

  48. Bennett, S.D., Cockins, L., Miyahara, Y., Grütter, P., Clerk, A.A.: Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys. Rev. Lett. 104, 017203 (2010)

    Article  ADS  Google Scholar 

  49. Wu, B., Hulbert, J.F., Lunt, E.J., Hurd, K., Hawkins, A.R., Schmidt, H.: Slow light on a chip via atomic quantum state control. Nat. Photonics 4, 776 (2010)

    Article  ADS  Google Scholar 

  50. Stepanov, S., Sánchez, M.P.: Slow and fast light via two-wave mixing in erbium-doped fibers with saturable absorption. Phys. Rev. A 80, 053830 (2009)

    Article  ADS  Google Scholar 

  51. Dudin, Y.O., Zhao, R., Kennedy, T.A.B., Kuzmich, A.: Light storage in a magnetically dressed optical lattice. Phys. Rev. A 81, 041805 (2010)

    Article  ADS  Google Scholar 

  52. Wilson-Rae, I., Zoller, P., Imamoḡlu, A.: Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004)

    Article  ADS  Google Scholar 

  53. Mahan, G.D.: Many-particle physics, 2nd edn. pp. 304. Plenum Press, NY (1990)

    Book  Google Scholar 

  54. Fleischhauer, M., Lukin, M.D.: Quantum memory for photons: dark-state polaritons. Phys. Rev. A 65, 022314 (2002)

    Article  ADS  Google Scholar 

  55. Peng, A., Johnsson, M., Bowen, W.P., Lam, P.K., Bachor, H.A., Hope, J.J.: Squeezing and entanglement delay using slow light. Phys. Rev. A 71, 033809 (2005)

    Article  ADS  Google Scholar 

  56. Fleischhauer, M., Lukin, M.D.: Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000)

    Article  ADS  Google Scholar 

  57. Verbridge, S.S., Shapiro, D.F., Craighead, H.G., Parpia J., M.: Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Lett. 7, 1728 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 10774101 and No. 10974133), the National Ministry of Education Program for Ph.D., the Foundation for Excellent Doctoral Dissertation of Shanghai Jiao Tong University, the Award for Excellent New Doctoral Student (Ministry of Education), and the Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Jin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, JJ., Zhu, KD. (2012). Quantum Optical Transistor and Other Devices Based on Nanostructures. In: Wang, Z. (eds) Quantum Dot Devices. Lecture Notes in Nanoscale Science and Technology, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3570-9_9

Download citation

Publish with us

Policies and ethics