Post-Growth Intermixing of GaAs Based Quantum Dot Devices

  • Ziyang Zhang
  • R. A. Hogg
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 13)


Post-growth intermixing is a powerful technique currently applied in areas such as high power laser arrays and photonics integrated circuits. The application of this technique to quantum dot (QD) based laser materials is of significant interest offering new types of device and allows large-scale integrated devices, but brings about new challenges. In this paper, we will initially review quantum well (QW) intermixing processes and applications and move on to describe specific differences between QW and QD based materials and review the literature on various forms of QD intermixing. Structural and spectroscopic studies of intermixed QD materials will be discussed, and the importance of modulation p-doping of structures will be highlighted. We will then go on to describe active intermixed QD devices including both lasers and broadband devices such as super luminescent diodes and amplifiers, and conclude with our latest results on selective area intermixed devices.


Quantum well Quantum dot  Post-growth intermixing  Group III vacancies  Group III interstitials  Laser diodes  Superluminescent light emitting diodes  Photonic integrated circuits  


  1. 1.
    Sengupta, D., Jandhyala, V., Kim, S., Fang, W., Malin, J., Apostolakis, P., Hseih, K.C., Chang, Y.C., Chuang, S.L., Bandara, S., Gunapala, S., Feng, M., Michielssen, E., Stillman, G.: Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering. IEEE J. Sel. Top. Quantum Electron. 4(4), 746–757 (1998)CrossRefGoogle Scholar
  2. 2.
    Deppe, D.G., Holonyak, N.: Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures. J. Appl. Phys. 64(12), R93–R113 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    Ooi, B.S., McIlvaney, K., Street, M.W., Helmy, A.S., Ayling, S.G., Bryce, A.C., Marsh, J.H., Roberts, J.S.: Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion. IEEE J. Quantum Electron. 33(10), 1784–1793 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Marsh, J.H.: Quantum-well intermixing. Semicond. Sci. Technol. 8(6), 1136–1155 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    Chang, L.L., Koma, A.: Interdiffusion between GaAs and AlAs. Appl. Phys. Lett. 29(3), 138–141 (1976)ADSCrossRefGoogle Scholar
  6. 6.
    Mei, P., Yoon, H.W., Venkatesan, T., Schwarz, S.A., Harbison, J.P.: Kinetics of silicon-induced mixing of AlAs-GaAs super lattices. Appl. Phys. Lett. 50(25), 1823–1825 (1987)ADSCrossRefGoogle Scholar
  7. 7.
  8. 8.
    Shchekin, O.B., Deppe, D.G.: 1.3 μ m InAs quantum dot laser with T-o = 161 K from 0 to 80°C. Appl. Phys. Lett. 80(18), 3277–3279 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Huang, X.D., Stintz, A., Hains, C.P., Liu, G.T., Cheng, J., Malloy, K.J.: Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser. IEEE Photonics Technol. Lett. 12(3), 227–229 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Otsubo, K., Hatori, N., Ishida, M., Okumura, S., Akiyama, T., Nakata, Y., Ebe, H., Sugawara, M., Arakawa, Y.: Temperature-insensitive eye-opening under 10 Gb/s modulation of 1.3 μm p-doped quantum-dot lasers without current adjustments. Jpn. J. Appl. Phys., Part 2-Lett. Express Lett. 43(8B), L1124–L1126 (2004)CrossRefGoogle Scholar
  11. 11.
    Djie, H.S., Dimas, C.E., Wang, D.N., Ooi, B.S., Hwang, J.C.M., Dang, G.T., Chang, W.H.: InGaAs/GaAs quantum-dot super luminescent diode for optical sensor and imaging. IEEE Sens. J. 7(1–2), 251–257 (2007)CrossRefGoogle Scholar
  12. 12.
    Xin, Y.C., Martinez, A., Saiz, T., Moscho, A.J., Li, Y., Nilsen, T.A., Gray, A.L., Lester, L.F.: 1.3 μm quantum-dot multisection super luminescent diodes with extremely broad bandwidth. IEEE Photonics Technol. Lett. 19(5–8), 501–503 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Zhang, Z.Y., Wang, Z.G., Xu, B., Jin, P., Sun, Z.Z., Liu, F.Q.: High-performance quantum-dot super luminescent diodes. IEEE Photonics Technol. Lett. 16(1), 27–29 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, X.C., Xu, S.J., Chua, S.J., Zhang, Z.H., Fan, W.J., Wang, C.H., Jiang, J., Xie, X.G.: Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing. J. Appl. Phys. 86(5), 2687–2690 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, Z.Y., Hogg, R.A., Lv, X.Q., Wang, Z.G.: Self-assembled quantum-dot super luminescent light-emitting diodes. Adv. Opt. Photon 2, 201–228 (2010) CrossRefGoogle Scholar
  16. 16.
    Djie, H.S., Wang, Y., Ding, Y.H., Wang, D.N., Hwang, J.C.M., Fang, X.M., Wu, Y., Fastenau, J.M., Liu, A.W.K., Dang, G.T., Chang, W.H., Ooi, B.S.: Quantum dash intermixing. IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008)CrossRefGoogle Scholar
  17. 17.
    Fafard, S., Allen, C.N.: Intermixing in quantum-dot ensembles with sharp adjustable shells. Appl. Phys. Lett. 75(16), 2374–2376 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    Heinrichsdorff, F., Grundmann, M., Stier, O., Krost, A., Bimberg, D.: Influence of In/Ga intermixing on the optical properties of InGaAsInGaAs/GaAs quantum dots. J. Cryst. Growth 195(1–4), 540–545 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Djie, H.S., Wang, Y., Ooi, B.S., Wang, D.N., Hwang, J.C.M., Fang, X.M., Wu, Y., Fastenau, J.M., Liu, W.K., Dang, G.T., Chang, W.H.: Wavelength tuning of InAs/InAIGaAs quantum-dash-in-well laser using post growth intermixing. Electron. Lett. 43(1), 33–35 (2007)CrossRefGoogle Scholar
  20. 20.
    Fu, L., McKerracher, I., Tan, H.H., Jagadish, C.: Thermal annealing study on InGaAs/GaAs quantum dot infrared photo detectors. In: International Conference on Nanoscience and Nanotechnology, vols. 1 and 2, pp. 550–553 (2006)Google Scholar
  21. 21.
    Zhang, Z.Y., Hogg, R.A., Xu, B., Jin, P., Wang, Z.G.: Realization of extremely broadband quantum-dot super luminescent light-emitting diodes by rapid thermal-annealing process. Opt. Lett. 33(11), 1210–1212 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Chia, C.K., Chua, S.J., Dong, J.R., Teo, S.L.: Ultrawide band quantum dot light emitting device by post fabrication laser annealing. Appl. Phys. Lett. 90(6), 061101 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    Zhang, Z.Y., Jiang, Q., Luxmoore, I.J., Hogg, R.A.: A p-type-doped quantum dot super luminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap. Nanotechnology 20(5), 055204 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Leon, R., Kim, Y., Jagadish, C., Gal, M., Zou, J., Cockayne, D.J.H.: Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots. Appl. Phys. Lett. 69(13), 1888–1890 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Kosogov, A.O., Werner, P., Gosele, U., Ledentsov, N.N., Bimberg, D., Ustinov, V.M., Egorov, A.Y., Zhukov, A.E., Kopev, P.S., Bert, N.A., Alferov, Z.I.: Structural and optical properties of InAs-GaAs quantum dots subjected to high temperature annealing. Appl. Phys. Lett. 69(20), 3072–3074 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    Zhang, Z.Y., Jin, P., Li, C.M., Ye, X.L., Meng, X.Q., Xu, B., Liu, F.Q., Wang, Z.G.: The evolution of InAs/InAlAs/InGaAlAs quantum dots after rapid thermal annealing. J. Cryst. Growth 253(1–4), 59–63 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Djie, H.S., Gunawan, O., Wang, D.N., Ooi, B.S., Hwang, J.C.M.: Group-III vacancy induced InxGa1-xAs quantum dot interdiffusion. Phys. Rev. B 73(15), 1–6 (2006)CrossRefGoogle Scholar
  28. 28.
    Babinski, A., Jasinski, J., Bozek, R., Szepielow, A., Baranowski, J.M.: Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap. Appl. Phys. Lett. 79(16), 2576–2578 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    Bhattacharyya, D., Helmy, A.S., Bryce, A.C., Avrutin, E.A., Marsh, J.H.: Selective control of self-organized In0.5Ga0.5As/GaAs quantum dot properties: quantum dot intermixing. J. Appl. Phys. 88(8), 4619–4622 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Lobo, C., Leon, R., Fafard, S., Piva, P.G.: Intermixing induced changes in the radiative emission from III-V quantum dots. Appl. Phys. Lett. 72(22), 2850–2852 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    Chia, C.K., Dong, J.R., Chua, S.J., Tripathy, S.: Band gap engineering in semiconductor quantum dots. J. Cryst. Growth 288(1), 57–60 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Dubowski, J.J., Allen, C.N., Fafard, S.: Laser-induced InAs/GaAs quantum dot intermixing. Appl. Phys. Lett. 77(22), 3583–3585 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    Pan, D., Towe, E., Kennerly, S.: Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photo detectors. Appl. Phys. Lett. 73(14), 1937–1939 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Krishna, S., Bhattacharya, P., McCann, P.J., Namjou, K.: Room-temperature long-wavelength (λ = 13.3 μm) unipolar quantum dot intersubband laser. Electron. Lett. 36(18), 1550–1551 (2000)CrossRefGoogle Scholar
  35. 35.
    Kowalski, O.P., Hamilton, C.J., McDougall, S.D., Marsh, J.H., Bryce, A.C., De la Rue, R.M., Vogele, B., Stanley, C.R., Button, C.C., Roberts, J.S.: A universal damage induced technique for quantum well intermixing. Appl. Phys. Lett. 72(5), 581–583 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    Beauvais, J., Marsh, J.H., Kean, A.H., Bryce, A.C., Button, C.: Suppression of bandgap shifts in GaAs/AlGaAs quantum-wells using strontium fluoride caps. Electron. Lett. 28(17), 1670–1672 (1992)CrossRefGoogle Scholar
  37. 37.
    Deppe, D.G., Guido, L.J., Holonyak, N., Hsieh, K.C., Burnham, R.D., Thornton, R.L., Paoli, T.L.: Stripe-geometry quantum-well hetero structure AlxGa1-xAs-GaAs lasers defined by defect diffusion. Appl. Phys. Lett. 49(9), 510–512 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    Choi, W.J., Lee, J.I., Han, I.K., Kang, K.N., Kim, Y., Park, H.L., Cho, K.: Enhanced disordering of GAAS/ALGAAS multiple-quantum-well by rapid thermal annealing using plasma-enhanced chemical-vapor-deposited sin capping layer grown at high RF power condition. J. Mater. Sci. Lett. 13(5), 326–328 (1994)CrossRefGoogle Scholar
  39. 39.
    Ribot, H., Lee, K.W., Simes, R.J., Yan, R.H., Coldren, L.A.: Disordering of GaAs AlGaAs multiple quantum well structures by thermal annealing for monolithic integration of laser and phase modulator. Appl. Phys. Lett. 55(7), 672–674 (1989)ADSCrossRefGoogle Scholar
  40. 40.
    Fu, L., Lever, P., Tan, H.H., Jagadish, C., Reece, P., Gal, M.: Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide. Appl. Phys. Lett. 82(16), 2613–2615 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    Cusumano, P., Ooi, B.S., Helmy, A.S., Ayling, S.G., Bryce, A.C., Marsh, J.H., Voegele, B., Rose, M.J.: Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer. J. Appl. Phys. 81(5), 2445–2447 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    Cohen, R.M., Li, G., Jagadish, C., Burke, P.T., Gal, M.: Native defect engineering of interdiffusion using thermally grown oxides of GaAs. Appl. Phys. Lett. 73(6), 803–805 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    Zhang, Z.Y., Jiang, Q., Hogg, R.A.: Tunable interband and intersubband transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by postgrowth annealing process. Appl. Phys. Lett. 93(7), 071111–0711113 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Mokkapati, S., Du, S., Buda, M., Fu, L., Tan, H.H., Jagadish, C.: Multiple wavelength InGaAs quantum dot lasers using ion implantation induced intermixing. Nanoscale Res. Lett. 2(11), 550–553 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Song, J.H., Kim, K., Leem, Y.A., Kim, G.: High-power broadband super luminescent diode using selective area growth at 1.5 μm wavelength. IEEE Photonics Technol. Lett. 19, 1415–1417 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    Ong, T.K., Yin, M., Yu, Z., Chan, Y.C., Lam, Y.L.: High performance quantum well intermixed super luminescent diodes. Meas. Sci. Technol. 15(8), 1591–1595 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    Zhang, Z.Y., Jiang, Q., Hopkinson, M., Hogg, R.A.: Effects of intermixing on modulation p-doped quantum dot super luminescent light emitting diodes. Opt. Express 18(7), 7055–7063 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Drexler, W.: Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9(1), 47–74 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    Bardella, P., Rossetti, M., Montrosset, I.: Modeling of broadband chirped quantum-dot super-luminescent diodes. IEEE J. Sel. Top. Quantum Electron. 15(3), 785–791 (2009)CrossRefGoogle Scholar
  50. 50.
    Sugimoto, Y., Tanaka, Y., Ikeda, N., Nakamura, Y., Asakawa, K., Inoue, K.: Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length. Opt. Express 12(6), 1090–1096 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    Rafailov, E.U., Cataluna, M.A., Sibbett, W.: Mode-locked quantum-dot lasers. Nat. Photonics 1(7), 395–401 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    Thompson, M.G., Rae, A.R., Xia, M., Penty, R.V., White, I.H.: InGaAs quantum-dot mode-locked laser diodes. IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009)CrossRefGoogle Scholar
  53. 53.
    Rafailov, E.U., White, S.J., Lagatsky, A.A., Miller, A., Sibbett, W., Livshits, D.A., Zhukov, A.E., Ustinov, V.M.: Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers. IEEE Photonics Technol. Lett. 16(11), 2439–2441 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    Scurtescu, C., Zhang, Z.Y., Alcock, J., Fedosejevs, R., Blumin, M., Saveliev, I., Yang, S., Ruda, H., Tsui, Y.Y.: Quantum dot saturable absorber for passive mode locking of Nd : YVO4 lasers at 1,064 nm. Appl. Phys. B-Lasers Opt. 87(4), 671–675 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    Stevenson, R.M., Young, R.J., Atkinson, P., Cooper, K., Ritchie, D.A., Shields, A.J.: A semiconductor source of triggered entangled photon pairs. Nature 439(7073), 179–182 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    Shields, A.J.: Semiconductor quantum light sources. Nat. Photonics 1(4), 215–223 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    Wang, Q., Wang, T., Bai, J., Cullis, A.G., Parbrook, P.J., Ranalli, F.: Influence of annealing temperature on optical properties of InGaN quantum dot based light emitting diodes. Appl. Phys. Lett. 93(8), 081915 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.EPSRC National Centre for III-V Technologies, Department of Electronic and Electrical Engineering, Centre for Nanoscience and TechnologyUniversity of SheffieldSheffieldUK

Personalised recommendations