Skip to main content

Spectral Splitting Effects and Their Influence to the Performance of Quantum Dot Mode Locked Lasers

  • Chapter
  • First Online:
Quantum Dot Devices

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 13))

  • 2606 Accesses

Abstract

In this chapter the multi-wavelength emission capabilities of quantum dot (QD) lasers, due to splitting effects in the ground-state (GS), are analyzed. These emission sub-bands are not related to carrier transitions from different excitation levels like GS/excited-state (ES) emission, but are strongly depended on gain saturation effects. The existence of these sub-bands alongside their wavelength tuning capabilities, have enabled the identification of novel regimes of operation like pulse width narrowing in the presence of dual GS emission, and tunable dual state mode locking. The exploitation of these regimes can allow the deployment of QD mode locked lasers into newly emerging applications both in the telecomm and medical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shernyakov, Y.M., Bedarev, D.A., Kondrateva, E.Y., Kopev, P.S., Kovsh, A.R., Maleev, N.A., Maximov, M.V., Mikhrin, S.S., Tsatsulnikov, A.F., Ustinov, V.M., Volovic, B.V., Zhukov, A.E., Alferov, Z.I., Ledenstov, N.N., Bimberg, D.: 1.3 μm GaAs-based laser using quantum dots obtained by spinodal decomposition. IEEE Electron. Lett. 35, 898 (1999)

    Article  Google Scholar 

  2. Prasankumar, R.P., Attaluri, R.S., Averitt, R.D., Urayama, J., Bernstein, N.W., Rotella, P., Stintz, A.D., Krishna, S., Taylor, A.J.: Ultrafast carrier dynamics in an InAs/InGaAs quantum dots in a well heterostructure. Opt. Express 16, 1165 (2008)

    Article  ADS  Google Scholar 

  3. Oksanen, J., Tulkki, J.: Linewidth enhancement factor and chirp in quantum dot lasers. J. Appl. Phys. 94, 1983 (2003)

    Article  ADS  Google Scholar 

  4. Rae, A.R., Thompson, M.G., Penty, R.V., White, I.H., Kovsh, A.R., Mikhrin, S.S., Livshits, D.A., Krestnikov, I.: In: Proceedings of the LEOS Annual Meeting Conference, vol. 1, p. 874 (2006)

    Google Scholar 

  5. Rafailov, E.U., Cataluna, M.A., Sibbet, W., Il’inskaya, N.D., Zadiranov, Y.M., Zhukov, A.E., Ustinov, V.M., Livshits, D.A., Kovsh, A.R., Ledentsov, N.N.: High power picosecond and femtosecond pulse generation from a two section mode-locked quantum dot laser. Appl. Phys. Lett. 87, 081107 (2005)

    Article  ADS  Google Scholar 

  6. Gubenko, A., Livshits, D., Krestnikov, I., Mikhrin, S., Kozhukhov, A., Kovsh, A., Ledentsov, N., Zhukov, A., Portnoi, E., Ioffe, A.F.: High power monolithic passively mode-locked quantum-dot laser. IEEE Electron. Lett. 41, 1124 (2005)

    Article  Google Scholar 

  7. Rae, A.R., Thompson, M.G., Kovsh, A.R., Penty, R.V., White, I.H.: InGaAs-GaAs quantum dot mode-locked laser diodes: optimization of geometry for subpicosecond pulse generation. IEEE Photonics Technol. Lett. 21, 307 (2009)

    Article  ADS  Google Scholar 

  8. Djie, H.S., Ooi, B.S., Fang, X.-M., Wu, Y., Fastenau, J.M., Liu, W.K., Hopkinson, M.: Room temperature broadband emission of an InGaAs/GaAs quantum dot lasers. Opt. Lett. 32(1), 44–46 (2007)

    Article  ADS  Google Scholar 

  9. Tang, X., Cartledge, J.C., Shen, A., Akrout, A., Duan, G.H.: Low-timing-jitter all-optical clock recovery for 40 Gbits/s RZ-DPSK and NRZ-DPSK signals using a passively mode-locked quantum-dot Fabry–Perot semiconductor laser. Opt. Lett. 34(7), 899–901 (2009)

    Article  ADS  Google Scholar 

  10. Silva, M.C., Lagrost, A., Bramerie, L., Gay, M., Besnard, P., Joindot, M., Simon, J.C., Shen, A., Duan, G.H.: Up to 427 GHz all optical frequency down-conversion clock recovery based on quantum-dash Fabry–Perot mode-locked laser. IEEE J. Lightwave Technol. 29(4), 609–615 (2011)

    Article  Google Scholar 

  11. Bimberg, D., Meuer C., Laemmlin, M., Liebich, S., Kim, J., Eisenstein, G., Kovsh, A.R.: Quantum dot semiconductor optical amplifiers for wavelength conversion using cross-gain modulation. In: 10th Anniversary International Conference on Transparent Optical Networks, ICTON 2008, no. 22–25, pp. 141–144 (2008)

    Google Scholar 

  12. Nielsen, D., Chuang, S.L.: Four wave mixing and wavelength conversion in quantum dots. Phys. Rev. B 81(3), 035305 (2010)

    Article  ADS  Google Scholar 

  13. Leburn, C.G., Metzger, N.K., Lagatsky, A.A., Brown, C.T., Sibbett, W., Lumb, M., Clarke, E., Murray, R.: Advanced Solid-State Photonics, OSA Technical Digest Series (CD). Optical Society of America, Washington (2009)

    Google Scholar 

  14. Cataluna, M.A., Sibbet, W., Livshits, D.A., Weimert, J., Kovsh, A.R., Rafailov, E.U.: Stable mode locking via ground—or excited state transitions in a two section quantum dot laser. Appl. Phys. Lett. 89, 081124 (2006)

    Article  ADS  Google Scholar 

  15. Cataluna, M.A., Nikitichev, D.I., Mikroulis, S., Simos, H., Simos, C., Mesaritakis, C., Syvridis, D., Krestnikov, I., Livshits, D., Rafailov, E.U.: Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation. Opt. Express 18(12), 12832–12838 (2010)

    Article  ADS  Google Scholar 

  16. Kim, J., Choi, M.T., Delfyett, P.J.: Pulse generation and compression via ground and excited state from a grating coupled passively mode-locked quantum dot two section diode laser. Appl. Phys. Lett. 89, 261106 (2006)

    Article  ADS  Google Scholar 

  17. Cataluna, M.A., McRobbie, A.D., Sibbett, W., Livshits, D.A., Kovsh, A.R., Rafailov, E.U.: New mode-locking regime in a quantum-dot laser: enhancement by simultaneous CW excited-state emission. In: CLEO 2006, Paper CThH3, Long Beach, USA (2006)

    Google Scholar 

  18. Sugawara, M., Hatori, N., Ebe, H., Ishida, M., Arakawa, Y., Akiyama, T., Otsubo, K., Nakata, Y.: Modelling of room temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum dot lasers: homogenous broadening of optical gain under current injection. J. Appl. Phys. 97, 043523 (2005)

    Article  ADS  Google Scholar 

  19. Liu, J., Lu, Z., Raymond, S., Poole, P.J., Barrios, P.J., Poitras, D.: Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser. Opt. Lett. 33, 1702 (2008)

    Article  ADS  Google Scholar 

  20. Li, S.G., Gong, Q., Lao, Y.F., Yang, H.D., Gao, S., Chen, P., Zhang, Y.G., Feng, S.L., Wang, H.L.: Two color quantum dot laser with tunable gap. Appl. Phys. Lett. 95, 251111 (2009)

    Article  ADS  Google Scholar 

  21. Mesaritakis, C., Simos, C., Simos, H., Mikroulis, S., Krestnikov, I., Syvridis, D.: Pulse width narrowing due to dual ground state emission in quantum dot passively mode locked lasers. Appl. Phys. Lett. 96, 211110 (2010)

    Article  ADS  Google Scholar 

  22. Malins, D.B., Gomez-Iglesias, A., White, S.J., Sibbett, W., Miller, A., Rafailov, E.U.: Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber. Appl. Phys. Lett. 89(17), 171111 (2006)

    Article  ADS  Google Scholar 

  23. Thompson, M.G., Marinelli, C., Chu, Y., Sellin, R.L., Penty, R.V., White, L.H., Poel, V., Birkedal, M., Hvam, D., Ustinov, J., Lammlin, V.M., Bimberg, M.: Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers. In: Semiconductor Laser Conference, 2004, Conference Digest. 2004 IEEE 19th International, pp. 53–54, (2004)

    Google Scholar 

  24. Markus, A., Chen, J.X., Paranthoën, C., Fiore, A., Platz, C., Gauthier-Lafaye, O.: Simultaneous two-state lasing in quantum-dot lasers. Appl. Phys. Lett. 82, 1818 (2003)

    Article  ADS  Google Scholar 

  25. Solomon, J.S., Trezza, J.A., Marshall, A.F., Harris, J.S.: Vertically aligned and electronically coupled growth induced InAs Islands in GaAs. Phys. Rev. Lett. 76(6), 952 (1995)

    Article  ADS  Google Scholar 

  26. Mukai, K., Nakata, Y., Otsubo, K., Sugawara, M., Yokoyama, N., Ishigawa, H.: 1.3 μm CW lasing characteristics of self-assembled InGaAs/GaAs quantum dots. IEEE J. Quantum. Electron. 36(4), 472 (2000)

    Article  ADS  Google Scholar 

  27. Rossetti, M., Bardella, P., Montrosset, I.: Time-domain travelling-wave model for quantum dot passively mode-locked lasers. IEEE J. Quantum Electron. 47(2), 139–150 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charis Mesaritakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mesaritakis, C., Syvridis, D. (2012). Spectral Splitting Effects and Their Influence to the Performance of Quantum Dot Mode Locked Lasers. In: Wang, Z. (eds) Quantum Dot Devices. Lecture Notes in Nanoscale Science and Technology, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3570-9_3

Download citation

Publish with us

Policies and ethics