Skip to main content

Semiconductor Quantum Dot-Sensitized Solar Cells Employing TiO2 Nanostructured Photoanodes with Different Morphologies

  • Chapter
  • First Online:
Book cover Quantum Dot Devices

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 13))

  • 2722 Accesses

Abstract

CdSe quantum dot (QD)-sensitized solar cells (QDSCs) were synthesized by adsorbing CdSe QDs onto TiO2 nanostructured electrodes with different morphologies, i.e., nanoparticles, nanotubes, and inverse opals. The optical absorption, photoelectrochemical, and photovoltaic properties of the QDSCs were characterized and the dependences of these properties on the QD deposition time and the TiO2 nanostructure are discussed. To improve the photovoltaic performance of the CdSe QDSCs, surface passivation with a ZnS coating was introduced and Cu2S counter electrodes were applied. All aspects of the photovoltaic performance, including the short-circuit photocurrent density, open-circuit voltage, fill factor, and efficiency, were found to be significantly improved by the surface modification with ZnS. For the counter electrode, the Cu2S electrode was demonstrated to be more efficient than platinum against the polysulfide electrolytes usually used as redox couples in CdSe QDSCs. Moreover, CdS QD adsorption on the TiO2 electrodes prior to CdSe QD adsorption also resulted in better solar cell performance. In addition, we found that the morphology of the TiO2 electrodes had a great influence on the photovoltaic properties of the QDSCs. Finally, a power conversion efficiency as high as 4.9% was achieved for a combined CdS/CdSe QDSC under solar illumination of 100 mW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C: Photochem. Rev. 4, 145–153 (2003)

    Article  Google Scholar 

  3. Chiba, Y., Islam, A., Watanabe, Y., Koyama, R., Koide, N., Han, L.: Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 43, L638–L640 (2006)

    Article  Google Scholar 

  4. Polo, A.S., Itokatu, M.K., Iha, N.Y.M.: Metal complex sensitizers in dye-sensitized solar cells. Coord. Chem. Rev. 248, 1343–1361 (2004)

    Article  Google Scholar 

  5. Park, B.-W., Inoue, T., Ogomi, Y., Miyamoto, A., Fujita, S., Pandey, S.S., Hayase, S.: Electron injection from linearly linked two dye molecules to metal oxide nanoparticles for dye-sensitized solar cells covering wavelength range from 400 to 950 nm. Appl. Phys. Express 4, 012301 (2011)

    Article  ADS  Google Scholar 

  6. Vogel, R., Pohl, K., Weller, H.: Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS. Chem. Phys. Lett. 174, 241–246 (1990)

    Article  ADS  Google Scholar 

  7. Vogel, R., Hoyer, P., Weller, H.: Quantum-sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98, 3183–3188 (1994)

    Article  Google Scholar 

  8. Toyoda, T., Saikusa, K., Shen, Q.: Photoacoustic and photocurrent studies of highly porous TiO2 electrodes sensitized by quantum-sized CdS. Jpn. J. Appl. Phys. 38, 3185–3186 (1999)

    Article  ADS  Google Scholar 

  9. Toyoda, T., Sato, J., Shen, Q.: Effect of sensitization by quantum-sized CdS on photoacoustic and photoelectrochemical current spectra of porous TiO2 electrodes. Rev. Sci. Instrum. 74, 297–299 (2003)

    Article  ADS  Google Scholar 

  10. Peter, L.M., Riley, D.J., Tull, E.J., Wijayanta, K.G.U.: Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. Chem. Commun. 2002, 1030–1031 (2002)

    Article  Google Scholar 

  11. Plass, R., Pelet, S., Krueger, J., Gratzel, M., Bach, U.: Quantum dot sensitization of organic—inorganic hybrid solar cells. J. Phys. Chem. B 106, 7578–7580 (2002)

    Article  Google Scholar 

  12. Shen, Q., Toyoda, T.: Characterization of nanostructured TiO2 electrodes sensitized with CdSe quantum dots using photoacoustic and photoelectrochemical current methods. Jpn. J. Appl. Phys. 43, 2946–2951 (2004)

    Article  ADS  Google Scholar 

  13. Shen, Q., Arae, D., Toyoda, T.: Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates. J. Photochem. Photobiol. A: Chem. 164, 75–80 (2004)

    Article  Google Scholar 

  14. Yu, P.R., Zhu, K., Norman, A.G., Ferrere, S., Frank, A.J., Nozik, A.J.: Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J. Phys. Chem. B 110, 25451–25454 (2006)

    Article  Google Scholar 

  15. Robel, I., Subramanian, V., Kuno, M., Kamat, P.V.: Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006)

    Article  Google Scholar 

  16. Niitsoo, O., Sarkar, S.K., Pejoux, P., Rühle, S., Cahen, D., Hodes, G.: Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. J. Photochem. Photobiol. A 182, 306–313 (2006)

    Article  Google Scholar 

  17. Shen, Q., Katayama, K., Sawada, T., Yamaguchi, M., Toyoda, T.: Optical absorption, photoelectrochemical, and ultrafast carrier dynamic investigations of TiO2 electrodes composed of nanotubes and nanowires sensitized with CdSe quantum dots. Jpn. J. Appl. Phys. 45, 5569–5574 (2006)

    Article  ADS  Google Scholar 

  18. Shen, Q., Sato, T., Hashimoto, M., Chen, C.C., Toyoda, T.: Photoacoustic and photoelectrochemical characterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires. Thin Solid Films 499, 299–305 (2006)

    Article  ADS  Google Scholar 

  19. Diguna, L.J., Shen, Q., Kobayashi, J., Toyoda, T.: High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 91, 023116 (2007)

    Article  ADS  Google Scholar 

  20. Shen, Q., Kobayashi, J., Diguna, L.J., Toyoda, T.: Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 103, 084304 (2008)

    Article  ADS  Google Scholar 

  21. Shen, Q., Yamada, A., Tamura, S., Toyoda, T.: CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter- electrode. Appl. Phys. Lett. 97, 123107 (2010)

    Article  ADS  Google Scholar 

  22. Kamat, P.V.: Quantum dot solar cells. Semiconductor nanocrystals as light harvester. J. Phys. Chem. C 112, 18737–18753 (2008)

    Google Scholar 

  23. Gimenez, S., Mora-Sero, I., Macor, L., Guijarro, N., Lana-Villarreal, L., Gomez, R., Diguna, L.J., Shen, Q., Toyoda, T.: Bisquert, J: Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 20, 295204 (2009)

    Article  Google Scholar 

  24. Mora-Sero, I., Gimenez, S., Fabregat-Santiago, F., Gomez, R., Shen, Q., Toyoda, T., Bisquert, J.: Recombination in quantum dot sensitized solar cells. Acc. Chem. Res. 42, 1848–1857 (2009)

    Article  Google Scholar 

  25. Mora-Seró, I., Bisquert, J.: Breakthrough in the development of semiconductor-sensitized solar cells. J. Phys. Chem. Lett. 1, 3046–3052 (2010)

    Article  Google Scholar 

  26. Ruhle, S., Shalom, M., Zaban, A.: Quantum-dot-sensitized solar cells. Chem. Phys. Chem. 11, 2290–2304 (2010)

    Article  Google Scholar 

  27. Nozik, A.J.: Quantum dot solar cells. Physica E 14, 115–120 (2002)

    Article  ADS  Google Scholar 

  28. Nozik, A.J.: Multiple exciton generation in semiconductor quantum dots. Chem. Phys. Lett. 457, 3–11 (2008)

    Article  ADS  Google Scholar 

  29. Hodes, G.: Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J. Phys. Chem. C 112, 17778–17787 (2008)

    Article  Google Scholar 

  30. Schaller, R.D., Klimov, V.I.: High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004)

    Article  ADS  Google Scholar 

  31. Hanna, M.C., Nozik, A.J.: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006)

    Article  ADS  Google Scholar 

  32. Zhang, Q.X., Guo, X.Z., Huang, X.M., Huang, S.Q., Li, D.M., Luo, Y.H., Shen, Q., Toyoda, T., Meng, Q.B.: Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of mesoporous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 13, 4659–4667 (2011)

    Article  Google Scholar 

  33. Gonzalez-Pedro, V., Xu, X., Mora-Sero, I., Bisquert, J.: Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 4, 5783–5790 (2010)

    Article  Google Scholar 

  34. Gorer, S., Hode, G.: Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films. J. Phys. Chem. 98, 5338–5346 (1994)

    Article  Google Scholar 

  35. Guijarro, N., Lana-Villarreal, T., Shen, Q., Toyoda, T., Gómez, R.: Sensitization of titanium dioxide photoanodes with cadmium selenide quantum dots prepared by SILAR: photoelectrochemical and carrier dynamics studies. J. Phys. Chem. C 114, 21928–21937 (2010)

    Article  Google Scholar 

  36. Baker, D.R., Kamat, P.V.: Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv. Funct. Mater. 19, 805–811 (2009)

    Article  Google Scholar 

  37. Bang, J.H., Kamat, P.V.: Soalr cells by design: photoelectrochemistry of TiO2 nanorods arrays decorated with CdSe. Adv. Funct. Mater. 20, 1970–1976 (2010)

    Article  Google Scholar 

  38. Diguna, L.J., Murakami, M., Sato, A., Kumagai, Y., Ishihara, T., Kobayashi, N., Shen, Q., Toyoda, T.: Photoacoustic and photoelectrochemical characterization of inverse opal TiO2 sensitized with CdSe quantum dots. Jpn. J. Appl. Phys. 45, 5563–5568 (2006)

    Article  ADS  Google Scholar 

  39. Diguna, L.J., Shen, Q., Sato, A., Katayama, K., Sawada, T., Toyoda, T.: Optical absorption and ultrafast carrier dynamics characterization of CdSe quantum dots deposited on different morphologies of nanostructured TiO2 films. Mater. Sci. Eng. C 27, 1514–1520 (2007)

    Article  Google Scholar 

  40. Toyoda, T., Oshikane, K., Li, D.M., Luo, Y.H., Meng, Q.B., Shen, Q.: Photoacoustic and photoelectrochemical current spectra of combined CdS/CdSe quantum dots adsorbed on nanostructured TiO2 electrodes, together with photovoltaic characteristics. J. Appl. Phys. 108, 114304 (2010)

    Article  ADS  Google Scholar 

  41. Shen, Q., Toyoda, T.: Studies of optical absorption and electron transport in nanocrystalline TiO2 electrodes. Thin Solid Films 438–439, 167–170 (2003)

    Article  Google Scholar 

  42. Macak, J.M., Schmuki, P.: Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electro. Acta 52, 1258–1264 (2006)

    Article  Google Scholar 

  43. Wijnhoven, J., Vos, W.: Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998)

    Article  ADS  Google Scholar 

  44. Jayakrishnan, R., Nair, J.P., Kuruvilla, B.A., Kulkarni, S.K., Pandy, R.K.: Composition, structure and morphology of dip-coated rapid thermal annealed CdS and non-aqueous electrodeposited CdTe. Semicond. Sci. Tech. 11, 116 (1996)

    Article  ADS  Google Scholar 

  45. Yang, S.M., Huang, C.H., Zhai, J., Wang, Z.S., Jiang, L.: High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides. J. Mater. Chem. 12, 1459–1464 (2002)

    Article  Google Scholar 

  46. Rosencwaig, A., Gersho, A.: Theory of the photoacoustic effect with solids. J. Appl. Phys. 47, 64–69 (1977)

    Article  ADS  Google Scholar 

  47. Hodes, G., Manassen, J., Cahen, D.: Photo-electrochemical energy conversion: electrocatalytic sulphur electrodes. J. Appl. Electrochem. 7, 181–182 (1977)

    Article  Google Scholar 

  48. Hodes, G., Manassen, J., Cahen, D.: Electrocatalytic electrodes for the polysulfide redox system. J. Electrochem. Soc. 127, 544–549 (1980)

    Article  Google Scholar 

  49. Bawendi, M.G., Kortan, A.R., Steigerwald, M.L., Brus, L.E.: X-ray structural characterization of larger CdSe semiconductor clusters. J. Chem. Phys. 91, 7282–7290 (1989)

    Article  ADS  Google Scholar 

  50. Brus, L.E.: Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)

    Article  ADS  Google Scholar 

  51. Toyoda, T., Uehata, T., Suganuma, R., Tamura, T., Sato, A., Yamamoto, K., Shen, Q., Kobayashi, N.: Crystal growth of CdSe quantum dots adsorbed on nanoparticle, inverse opal, and nanotube TiO2 photoelectrodes characterized by photoacoustic spectroscopy. Jpn. J. Appl. Phys. 46, 4616–4621 (2007)

    Article  ADS  Google Scholar 

  52. Bisquert, J., Zaban, A., Salvador, P.: Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells nonequilibrium steady-state statistics and interfacial electron transfer via surface states. J. Phys. Chem. B 106, 8774–8782 (2002)

    Article  Google Scholar 

  53. Guijarro, N., Campiña, J.M., Shen, Q., Toyoda, T., Lana-Villarreal, T., Gómez, R.: Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 13, 12024–12032 (2011)

    Article  Google Scholar 

  54. Sudhagar, P., Jung, J.H., Park, S., Lee, Y.-G., Sathyamoorthy, R., Kang, Y.S., Ahn, H.: The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells. Electrochem. Commun. 11, 2220–2224 (2009)

    Article  Google Scholar 

  55. Chen, S., Paulose, M., Ruan, C., Mor, G.K., Varghese, O.K., Kouzoudis, D., Grimes, C.A.: Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells. J. Photochem. Photobiol. A 177, 177–184 (2006)

    Article  Google Scholar 

  56. Seabold, J.A., Shanker, K., Wilke, R.H.T., Paulose, M., Varghese, O.K., Grimes, C.A., Choi, K.: Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem. Mater. 20, 5266–5273 (2008)

    Article  Google Scholar 

  57. Lee, W., Kang, S.H., Kim, J.Y., Kolekar, G.B., Sung, Y.E., Han, S.H.: TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells. Nanotechnology 20, 335706 (2009)

    Article  Google Scholar 

  58. Tanaka, S.: Performance simulation for dye-sensitized solar cells: Toward high efficiency and solid state. Jpn. J. Appl. Phys. 40, 97–107 (2001)

    Article  ADS  Google Scholar 

  59. Nishimura, S., Abrams, N., Lewis, B.A., Halaoui, L.I., Mallouk, T.E., Benkstein, K.D., Lagemaat, J., Frank, A.J.: Standing wave enhancement of red absorbance and photocurrent in dye—sensitized Titanium dioxide photoelectrodes coupled to photonic crystals. J. Am. Chem. Soc. 125, 6306–6310 (2003)

    Article  Google Scholar 

  60. Huisman, C.L., Schoonman, J., Goossens, A.: The application of inverse titania opals in nanostructured solar cells. Sol. Energy Mater. Sol. Cells 85, 115–124 (2005)

    Google Scholar 

  61. Somani, P.R., Dionigi, C., Murgia, M., Palles, D., Nozar, P., Ruani, G.: Solid-state dye PV cells using inverse opal TiO2 films. Sol. Energy Mater. Sol. Cells 87, 513–519 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Part of this research was supported by the JST PRESTO program, Grant in Aid for Scientific Research (No. 21310073) from the Ministry of Education, Sports, Science and Technology of the Japanese Government. The authors would like to thank Dr. Lina J. Diguna, Mr. Junya Kobayashi, Mr. Yasumasa Ayuzawa, Mr. Satoru Tamura, Mr. Keita Oshikane, Mrs. Akari Yamada for their helps in the experiments. The authors thank Prof. Q.B. Meng, Prof. D.M. Li and Prof. Y.H. Luo for their cooperations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shen, Q., Toyoda, T. (2012). Semiconductor Quantum Dot-Sensitized Solar Cells Employing TiO2 Nanostructured Photoanodes with Different Morphologies. In: Wang, Z. (eds) Quantum Dot Devices. Lecture Notes in Nanoscale Science and Technology, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3570-9_14

Download citation

Publish with us

Policies and ethics