Skip to main content

Quantum Dots with Built-in Charge for Enhancing Quantum Dot Solar Cells and Infrared Photodetectors

  • Chapter
  • First Online:
  • 2668 Accesses

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 13))

Abstract

We present theoretical and experimental results of electron kinetics and transport in quantum dot structures with potential barriers created around dots via intentional or unintentional doping. Monte Carlo simulations demonstrate that photoelectron capture is substantially enhanced in strong fields and electron kinetics can be controlled by potential barriers. Therefore, by creating potential barriers around dots, we found that our novel quantum dots with built-in charge (Q-BIC) solar cells and infrared (IR) photodectors enhance electron intersubband transitions and suppress fast electron capture processes. These factors lead to a 60% increase in the photocurrent of the Q-BIC solar cells (without degradation of the open circuit voltage) and ~25 times increase in the photoresponse of the Q-BIC photodetectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shoji, H., Nakata, Y., Mukai, K., Sugiyama, Y., Sugawara, M., Yokoyama, N., Ishikawa, H.: Appl. Phys. Lett. 71, 193 (1997)

    Article  ADS  Google Scholar 

  2. Bimberg, D., Grundmann, M., Lendenstov, N.N.: Quantum Dots Heterostructures, 1st edn. Wiley, New York (1999)

    Google Scholar 

  3. Bhattacharya, P., Stiff-Roberts, A.D., Krishna, S., Kennerly, S.: Int. J. High Speed Electron. Syst. 12, 969 (2002)

    Article  Google Scholar 

  4. Krishna, S.: J. Phys. D 38, 2142 (2005)

    Article  ADS  Google Scholar 

  5. Towe, E., Pan, D.: IEEE J. Sel. Top. Quantum Electron. 6, 408 (2000)

    Article  Google Scholar 

  6. Oga, R., Lee, W.S., Fujiwara, Y., Takeda, Y.: Appl. Phys. Lett. 82, 4546 (2003)

    Article  ADS  Google Scholar 

  7. Jone-Bey, H.A.: Laser Focus World 42, 10 (2006)

    Google Scholar 

  8. Bockelmann, U., Bastard, G.: Phys. Rev. B 42, 8947 (1990)

    Article  ADS  Google Scholar 

  9. Ferreira, R., Bastard, G.: Appl. Phys. Lett. 74, 2818 (1999)

    Article  ADS  Google Scholar 

  10. Sablon, K.A., Little, J.W., Mitin, V., Sergeev, A., Vagidov, N., Reinhardt, K.: Nano Lett. 11, 2311–2317 (2011)

    Article  ADS  Google Scholar 

  11. Mitin, V., Antipov, A., Sergeev, A., Vagidov, N., Eason, D., Strasser, G.: Nanoscale Res. Lett. 6, 21 (2011)

    ADS  Google Scholar 

  12. Ohshima, T., Song, H.Z., Okada, Y., Akahane, K., Miyazawa, T., Kawabe, M., Yokoyama, N.: Phys. Status Solidi C 4, 1364 (2003)

    Article  Google Scholar 

  13. Schneider, C., Strau, M., Sünner, T., Huggenberger, A., Wiener, D., Reitzenstein, S., Kamp, M., Höfling, S., Forchel, A.: Appl. Phys. Lett. 92, 183101 (2008)

    Article  ADS  Google Scholar 

  14. Stranski, I.N., Krastanow, L.: AMA Arch. Opthalmol 146, 797 (1937)

    Google Scholar 

  15. Schchukin, V.A., Ledentsov, N.N., Bimberg, D.: Epitaxy of Nanostructures. Springer, Berlin (2004)

    Google Scholar 

  16. Srolovitz, D.J.: Acta Metall. 37, 621 (1989)

    Article  Google Scholar 

  17. Snyder, C.W., Orr, B.G., Kessler, D., Sander, L.M.: Phys. Rev. Lett. 66, 3032 (1991)

    Article  ADS  Google Scholar 

  18. Eaglesham, D.J., Cerullo, M.: Phys. Rev. Lett. 64, 1943 (1990)

    Article  ADS  Google Scholar 

  19. Gao, H.: J. Mech. Solids 39, 443 (1991)

    Article  ADS  MATH  Google Scholar 

  20. Ratsch, C., Zangwill, A.: Surf. Sci. 293, 123 (1993)

    Article  ADS  Google Scholar 

  21. Tersoff, J., LeGoues, F.K.: Phys. Rev. Lett. 72, 3570 (1994)

    Article  ADS  Google Scholar 

  22. Wang, Z.M., Churchill, H., George, C.E., Salamo, G.J.: Temperature dependent lasing characteristics of multi-stacked quantum dot lasers. J. Appl. Phys. 96

    Google Scholar 

  23. Guimard, D., Morihara, R., Bordel, D., Tanabe, K., Wakayama, Y., Nishioka, M., Arakawa, Y.: Appl. Phys. Lett. 96, 203507 (2010)

    Article  ADS  Google Scholar 

  24. Koguchi, N., Ishige, K.: Jpn. J. Appl. Phys. 32, 2052 (1993)

    Article  ADS  Google Scholar 

  25. Mitin, V., Pipa, V.I., Sergeev, A., Dutta, M., Stroscio, M.: Infrared phys. Technol. 42, 467 (2001)

    Article  ADS  Google Scholar 

  26. Vagidov, N., Sergeev, A., Mitin, V.: Int. J. High Speed Electron. Syst. 17, 585 (2007)

    Article  Google Scholar 

  27. Chien, L.H., Sergeev, A., Vagidov, N., Mitin, V.: Int. J. High Speed Electron. Syst. 18, 255 (2008)

    Article  Google Scholar 

  28. Lim, H., Movaghar, B., Tsao, S., et al.: Phys. Rev. B 74, 205321 (2006)

    Article  ADS  Google Scholar 

  29. Shockley, W., Queisser, H.J.: J. Appl. Phys. 32, 510 (1961)

    Article  ADS  Google Scholar 

  30. Alferov, Z.I.: Rev. Mod. Phys. 73, 767 (2001)

    Article  ADS  Google Scholar 

  31. Cotal, H., Fetzer, C., Boisvert, J., Kinsey, G., King, R., Hebert, P., Yoon, H., Karam, N.: Energy Environ. Sci. 2, 174 (2009)

    Article  Google Scholar 

  32. Sachenko, A.V., Sololovskyi, I.O.: Semicond. Phys. Quantum Electron. Optoelectron. 11, 1 (2008)

    Google Scholar 

  33. Alemu, A., Williams, L., Bhusal, L., Freundlich, A.: In: Proceedings of 19th European Photovoltaic Solar Energy Conference, 359 (Paris, France 2004)

    Google Scholar 

  34. Nozik, A.J.: Nano Lett. 10, 2735 (2010)

    Article  ADS  Google Scholar 

  35. Laghumavarapu, R.B., El-Emawy, M., Nuntawong, N., Moscho, A., Lester, L.F., Huffaker, D.L.: Appl. Phys. Lett. 91, 243115 (2007)

    Article  ADS  Google Scholar 

  36. Hubbard, S.M., Raffaelle, R., Robinson, R., Bailey, C., Wilt, D., Wolford, D., Maurer, W., Bailey, S.: Mater. Res. Soc. Symp. Proc. 1017, 13 (2007)

    Article  Google Scholar 

  37. Sablon, K.A., Little, J.W., Olver, K.A., Wang, Zh.M., Dorogan, V.G., Mazur, Yu.I., Salamo, G.J., Towner, F.J.: J. Appl. Phys. 108, 074305 (2010)

    Article  ADS  Google Scholar 

  38. Luque, A., Martı, A.: Phys. Rev. Lett. 78, 5014 (1997)

    Article  ADS  Google Scholar 

  39. Wei, G., Shiu, K.T., Giebink, N.C., Forrest, S.R.: Appl. Phys. Lett. 92, 066102 (2008)

    Article  ADS  Google Scholar 

  40. Zhou, D., Vullum, P.E., Sharma, G., Thomassen, S.F., Holmestad, R., Reenaas, T.W., Fimland, B.O.: Appl. Phys. Lett. 96, 083108 (2010)

    Article  ADS  Google Scholar 

  41. Hubbard, S.M., Cress, C.D., Bailey, C.G., Raffaelle, R.P., Bailey, S.G., Wilt, D.M.: Appl. Phys. Lett. 92, 123512 (2008)

    Article  ADS  Google Scholar 

  42. Oshima, R., Takata, A., Okada, Y.: Appl. Phys. Lett. 93, 083111 (2008)

    Article  ADS  Google Scholar 

  43. Schaller, R.D., Klimov, V.I.: Phys. Rev. Lett. 92, 186601 (2004)

    Article  ADS  Google Scholar 

  44. Ellingson, R.J., Beard, M.C., Johnson, J.C., Yu, P., Micic, O.I., Nozik, A.J., Shabaev, A., Efros, A.L.: Nano Lett. 5, 865 (2005)

    Article  ADS  Google Scholar 

  45. http://www.nextnano.de/nextnano3

  46. Sergeev, A., Mitin, V., Stroscio, M.: Phys. B 316–317, 369 (2002)

    Article  Google Scholar 

  47. Ridley, B.K.: Phys. Rev. B 50, 1717 (1994)

    Article  ADS  Google Scholar 

  48. Yarotski, D.A., Averitt, R.D., Negre, N., Crooker, S.A., Taylor, A.J., Donati, G.P., Stintz, A., Lester, L.F., Malloy, K.J.: J. Opt. Soc. Am. B 19, 1480 (2002)

    Article  ADS  Google Scholar 

  49. Tidrrow, M.Z.: Quantum sensing and nanophotonic devices II. In: Razeghi, M., Brown, G.J. (Eds.) Proceedings of SPIE, vol. 5732, p. 217 (2005)

    Google Scholar 

  50. Rogalski, A.: Prog. Quantum Electron. 27, 59 (2003)

    Article  ADS  Google Scholar 

  51. Gunapala, S.D., Bandara, S.V., Liu, J.K., et al.: Semicond. Sci. Technol. 20, 473 (2005)

    Article  ADS  Google Scholar 

  52. Levine, B.F.: J. Appl. Phys. Lett. 74, R1 (1993)

    ADS  Google Scholar 

  53. Höglund, L., Holtz, P.O., Pettersson, H., Asplund, C., Wang, Q., Malm, H., Almqvist, S., Petrini, E., Andersson, J.Y.: Appl. Phys. Lett. 94, 053503 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kimberley Olver, Fred Towner, and Gregory Salamo’s group for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly A. Sablon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sablon, K.A., Mitin, V., Little, J.W., Sergeev, A., Vagidov, N. (2012). Quantum Dots with Built-in Charge for Enhancing Quantum Dot Solar Cells and Infrared Photodetectors. In: Wang, Z. (eds) Quantum Dot Devices. Lecture Notes in Nanoscale Science and Technology, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3570-9_13

Download citation

Publish with us

Policies and ethics