Skip to main content

On the Search for Design Principles in Biological Systems

  • Chapter
  • First Online:
Evolutionary Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((volume 751))

Abstract

The search for basic concepts and underlying principles was at the core of the systems approach to science and technology. This approach was somehow abandoned in mainstream biology after its initial proposal, due to the rise and success of molecular biology. This situation has changed. The accumulated knowledge of decades of molecular studies in combination with new technological advances, while further highlighting the intricacies of natural systems, is also bringing back the quest-for-principles research program. Here, I present two lessons that I derived from my own quest: the importance of studying biological information processing to identify common principles in seemingly unrelated contexts and the adequacy of using known design principles at one level of biological organization as a valuable tool to help recognizing principles at an alternative one. These and additional lessons should contribute to the ultimate goal of establishing principles able to integrate the many scales of biological complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Bertalanffy L (1969) General systems theory. George Braziller, New York

    Google Scholar 

  2. Watson JD, Baker TA, Bell SP et al (2008) Molecular biology of the gene. Pearson/Benjamin Cummings, San Francisco

    Google Scholar 

  3. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(Suppl 6761):C47–52

    Article  PubMed  CAS  Google Scholar 

  4. Nurse P, Hayles J (2011) The cell in an era of systems biology. Cell 146:850–854

    Article  Google Scholar 

  5. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 15:367–377

    Article  Google Scholar 

  6. Savageau MA (1976) Biochemical systems analysis: a study of function and design in molecular biology. Addison Wesley, Boston

    Google Scholar 

  7. Alon U (2007) Introduction to systems biology: design principles of biological circuits. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  8. Bray D (2009) Wetware a computer in every living cell. Yale University Press, New Haven

    Google Scholar 

  9. Guantes R, Poyatos JF (2006) Dynamical principles of two-component genetic oscillators. PLoS Comput Biol 2:e30

    Article  PubMed  Google Scholar 

  10. Guantes R, Poyatos JF (2008) Multistable decision switches for flexible control of epigenetic differentiation. PLoS Comput Biol 4:e1000235

    Article  PubMed  Google Scholar 

  11. Hodgkin AL (1948) The local electric changes associated with repetitive action in a non-medulated axon. J Physiol 107:165–181

    PubMed  CAS  Google Scholar 

  12. Izhikevich EM (2000) Neural excitability, spiking, and bursting. Int J Bifurcat Chaos Appl Sci Eng 10:1171–1266

    Article  Google Scholar 

  13. Machens CK, Romo R, Brody CD (2005) Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307:1121–24

    Article  PubMed  CAS  Google Scholar 

  14. Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration in perceptual decisions. J Neurosci 26:1314–1328

    Article  PubMed  CAS  Google Scholar 

  15. Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K et al (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–929

    Article  PubMed  CAS  Google Scholar 

  16. Schwarz M, Cecconi F, Bernier G, Andrejewski N, Kammandel B et al (2000) Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development 127:4325–4334

    PubMed  CAS  Google Scholar 

  17. Mikeladze-Dvali T, Wernet MF, Pistillo D, Mazzoni EO, Teleman AA et al (2005) The growth regulators warts/lats and melted interact in a bistable loop to specify opposite fates in Drosophila R8 photoreceptors. Cell 122:775–787

    Article  PubMed  CAS  Google Scholar 

  18. Strogatz SH (2000) Nonlinear dynamics and Chaos: with applications in physics, biology, chemistry and engineering. Perseus, Cambridge

    Google Scholar 

  19. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6:451–464

    Article  PubMed  CAS  Google Scholar 

  20. Seeman NC, Rosenberg JM, Rich A (1976) Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci USA 73:804–08

    Article  PubMed  CAS  Google Scholar 

  21. Matthews BW (1988) Protein-DNA interaction. No code for recognition. Nature 335:294–295

    CAS  Google Scholar 

  22. Camas FM, Alm EJ, Poyatos JF (2010) Local gene regulation details a recognition code within the LacI transcriptional factor family. PLoS Comput Biol 6:e1000989

    Article  PubMed  Google Scholar 

  23. Camas FM, Poyatos JF (2008) What determines the assembly of transcriptional network motifs in Escherichia coli? PLoS One 3:e3657

    Article  PubMed  Google Scholar 

  24. Weickert MJ, Adhya S (1992) A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem 267:15869–15874

    PubMed  CAS  Google Scholar 

  25. Lewis M (2005) The lac repressor. Compt Rendus Biol 328:521–548

    Article  CAS  Google Scholar 

  26. Alm EJ, Huang KH, Price MN, Koche RP, Keller K et al (2005) The MicrobesOnline web site for comparative genomics. Genome Res 15:1015–1022

    Article  PubMed  CAS  Google Scholar 

  27. Kazakov AE, Cipriano MJ, Novichkov PS, Minovitsky S, Vinogradov DV et al (2007) RegTransBase – a database of regulatory sequences and interactions in a wide range of prokaryotic genomes. Nucleic Acids Res 35:D407–412

    Article  PubMed  CAS  Google Scholar 

  28. Ureta-Vidal A, Ettwiller L, Birney E (2003) Comparative genomics: genome-wide analysis in metazoan eukaryotes. Nat Rev Genet 4:251–262

    Article  PubMed  CAS  Google Scholar 

  29. Desjarlais JR, Berg JM (1992) Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc Natl Acad Sci USA 89:7345–7349

    Article  PubMed  CAS  Google Scholar 

  30. Sartorius J, Lehming N, Kisters B, von Wilcken-Bergmann B, Müller-Hill B (1989) lac repressor mutants with double or triple exchanges in the recognition helix bind specifically to lac operator variants with multiple exchanges. EMBO J 8:1265–1270

    PubMed  CAS  Google Scholar 

  31. Perros M, Steitz T (1996) DNA looping and Lac repressor-CAP interaction [comment on “Crystal structure of the lactose operon repressor and its complexes with DNA and inducer”]. Science 274:1929–1930 [author response 1931–1932]

    Google Scholar 

  32. Keller EF (2002) Making sense of life: explaining biological development with models, metaphors, and machines. Harvard University Press, Cambridge

    Google Scholar 

  33. De Schutter E (2008) Why are computational neuroscience and systems biology so separate? PLoS Comput Biol 4:e1000078

    Article  PubMed  Google Scholar 

  34. Papp B, Pál C, Hurst LD (2004) Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429:661–664

    Article  PubMed  CAS  Google Scholar 

  35. Soyer OS, Creevey CJ (2010) Duplicate retention in signalling proteins and constraints from network dynamics. J Evol Biol 23:2410–2421

    Article  PubMed  CAS  Google Scholar 

  36. Acar M, Becskei A, van Oudenaarden A (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435:228–232

    Article  PubMed  CAS  Google Scholar 

  37. Camas FM, Blázquez J, Poyatos JF (2006) Autogenous and nonautogenous control of response in a genetic network. Proc Natl Acad Sci USA 103:12718–12723

    Article  PubMed  CAS  Google Scholar 

  38. Cağatay T, Turcotte M, Elowitz MB, Garcia-Ojalvo J, Süel GM (2009) Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell 139:512–522

    Article  PubMed  Google Scholar 

  39. Ostrom E (2005) Understanding institutional diversity. Princeton University Press, Princeton

    Google Scholar 

  40. Okasha S (2006) Evolution and the levels of selection. Oxford University Press, Oxford

    Book  Google Scholar 

  41. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318:1088–1093

    Article  PubMed  CAS  Google Scholar 

  42. Floreano D, Keller L (2010) Evolution of adaptive behaviour in robots by means of Darwinian selection. PLoS Biol 8:e100029

    Article  Google Scholar 

Download references

Acknowledgements

I thank Raúl Guantes for discussions over the years, Francisco M. Camas for discussions and comments on an earlier draft, and Ministerio de Ciencia, Tecnología e Innovación (Spain) Grant BFU2008-03632/BMC for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Poyatos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Poyatos, J.F. (2012). On the Search for Design Principles in Biological Systems. In: Soyer, O. (eds) Evolutionary Systems Biology. Advances in Experimental Medicine and Biology, vol 751. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3567-9_9

Download citation

Publish with us

Policies and ethics