Skip to main content

Evolution In Silico: From Network Structure to Bifurcation Theory

  • Chapter
  • First Online:
Evolutionary Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((volume 751))

Abstract

I describe an evolutionary procedure in silico that creates small gene networks performing basic tasks. I use it to evolve a wide range of models for very different biological functions: multistability, adaptive networks and entire developmental programmes like somitogenesis and Hox gene pattern. In silico evolution finds both known and original network designs, and can be used to make predictions on biological behaviours. This computation illustrates how complex traits can evolve in an incremental way, and suggests that dynamical systems theory could be used to get new insights towards a predictive evolutionary theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Schemes based on a more probabilistic selection process have been tested and never significantly altered the outcomes of evolution described: the main reason is that in all cases described in this chapter, evolution happens in a very incremental way so that evolutionary innovations spread rapidly in the population.

  2. 2.

    On the contrary, there is a trade-off between these two fitnesses for network of Fig. 8.3d, this is the main reason why it does not spontaneously appear without imposing extra evolutionary constraints.

References

  1. Aulehla A, Pourquié O (2010) Signaling gradients during paraxial mesoderm development. Cold Spring Harbor Perspect Biol 2(2):1–17

    Article  Google Scholar 

  2. Aulehla A, Wiegraebe W, Baubet V, Wahl MB, Deng C, Taketo M, Lewandoski M, Pourquie O (2008) A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat Cell Biol 10(2):186–193

    Article  PubMed  CAS  Google Scholar 

  3. Behar M, Hao N, Dohlman HG, Elston TC (2007) Mathematical and computational analysis of adaptation via feedback inhibition in signal transduction pathways. Biophys J 93(3):806–821

    Article  PubMed  CAS  Google Scholar 

  4. Block SM, Segall JE, Berg HC (1983) Adaptation kinetics in bacterial chemotaxis. J Bacteriol 154(1):312–323

    PubMed  CAS  Google Scholar 

  5. Buchler NE, Louis M (2008) Molecular titration and ultrasensitivity in regulatory networks. J Mol Biol 384(5):1106–1119

    Article  PubMed  CAS  Google Scholar 

  6. Chai Y, Norman T, Kolter R, Losick R (2010) An epigenetic switch governing daughter cell separation in Bacillus subtilis. Gene Dev 24(8):754–765

    Article  PubMed  CAS  Google Scholar 

  7. Cherry JL, Adler FR (2000) How to make a biological switch. J Theor Biol 203(2):117–133

    Article  PubMed  CAS  Google Scholar 

  8. Conway Morris S (2004) Life’s solution: inevitable humans in a lonely universe. Cambridge University Press, Cambridge

    Google Scholar 

  9. Cooke J, Zeeman EC (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58(2):455–476

    Article  PubMed  CAS  Google Scholar 

  10. Cotterell J, Sharpe J (2010) An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients. Mol Syst Biol 6:425

    Article  PubMed  Google Scholar 

  11. Csikász-Nagy A, Soyer OS (2008) Adaptive dynamics with a single two-state protein. J R Soc Interface 5(Suppl 1):S41–S47

    Article  PubMed  Google Scholar 

  12. Cyrus L (1969) How to fold graciously. In: Proceedings of a Mossbauer spectroscopy in biological systems, Meeting held at Allerton House, Monticello, IL, pp 22–24

    Google Scholar 

  13. Darwin CR (1861) On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  14. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311(5762):796–800

    Article  PubMed  CAS  Google Scholar 

  15. Dequeant ML, Pourquie O (2008) Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 9(5):370–382

    Article  PubMed  CAS  Google Scholar 

  16. Dequeant ML, Glynn E, Gaudenz K, Wahl M, Chen J, Mushegian A, Pourquie O (2006) A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314(5805):1595–1598

    Article  PubMed  CAS  Google Scholar 

  17. Duboule D, Morata G (1994) Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 10(10):358–364

    Article  PubMed  CAS  Google Scholar 

  18. Dubrulle J, Pourquie O (2004) fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427(6973):419–422

    Article  PubMed  CAS  Google Scholar 

  19. Dubrulle J, McGrew MJ, Pourquie O (2001) FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106(2):219–232

    Article  PubMed  CAS  Google Scholar 

  20. Durston AJ, Jansen HJ, Wacker SA (2010) Review: time-space translation regulates trunk axial patterning in the early vertebrate embryo. Genomics 95(5):250–255

    Article  PubMed  CAS  Google Scholar 

  21. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  PubMed  CAS  Google Scholar 

  22. Fechner GT (1966) Elements of psychophysics. Holt, Rinehart and Winston, New York

    Google Scholar 

  23. Francois P, Hakim V (2004) Design of genetic networks with specified functions by evolution in silico. Proc Natl Acad Sci USA 101(2):580–585

    Article  PubMed  CAS  Google Scholar 

  24. Francois P, Hakim V (2005) Core genetic module: the mixed feedback loop. Phys Rev E Stat Nonlinear Soft Matter Phys 72(3 Pt 1):031908

    Article  Google Scholar 

  25. Francois P, Siggia ED (2008) A case study of evolutionary computation of biochemical adaptation. Phys Biol 5(2):26009

    Article  Google Scholar 

  26. François P, Siggia ED (2010) Predicting embryonic patterning using mutual entropy fitness and in silico evolution. Development 137(14):2385–2395

    Article  PubMed  Google Scholar 

  27. Francois P, Hakim V, Siggia ED (2007) Deriving structure from evolution: metazoan segmentation. Mol Syst Biol 3:9

    Article  Google Scholar 

  28. Fujimoto K, Ishihara S, Kaneko K (2008) Network evolution of body plans. PLoS ONE 3(7):e2772

    Article  PubMed  Google Scholar 

  29. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342

    Article  PubMed  CAS  Google Scholar 

  30. Gaunt SJ, Strachan L (1994) Forward spreading in the establishment of a vertebrate Hox expression boundary: the expression domain separates into anterior and posterior zones, and the spread occurs across implanted glass barriers. Dev Dynam 199(3):229–240

    Article  CAS  Google Scholar 

  31. Gehring WJ, Kloter U, Suga H (2009) Evolution of the Hox gene complex from an evolutionary ground state. Curr Top Dev Biol 88:35–61

    Article  PubMed  CAS  Google Scholar 

  32. Goldbeter A, Gonze D, Pourquie O (2007) Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Dev Dynam 236(6):1495–1508

    Article  CAS  Google Scholar 

  33. Gould SJ (1989) Wonderful life. W. W. Norton, New York

    Google Scholar 

  34. Iimura T, Pourquie O (2006) Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature 442(7102):568–571

    Article  PubMed  CAS  Google Scholar 

  35. Iimura T, Pourquie O (2007) Hox genes in time and space during vertebrate body formation. Dev Growth Differ 49(4):265–275

    Article  PubMed  CAS  Google Scholar 

  36. Ishihara S, Fujimoto K, Shibata T (2005) Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes. Gene Cell 10(11):1025–1038

    Article  CAS  Google Scholar 

  37. Izpisúa-Belmonte JC, Falkenstein H, Dollé P, Renucci A, Duboule D (1991) Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body. EMBO J 10(8):2279–2289

    PubMed  Google Scholar 

  38. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3(3):318–356

    Article  PubMed  CAS  Google Scholar 

  39. Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov KN, Manu, Myasnikova E, Vanario-Alonso CE, Samsonova M, Sharp DH, Reinitz J (2004) Dynamic control of positional information in the early Drosophila embryo. Nature 430(6997):368–371

    Article  PubMed  CAS  Google Scholar 

  40. Kmita M, Duboule D (2003) Organizing axes in time and space; 25 years of colinear tinkering. Science 301(5631):331–333

    Article  PubMed  CAS  Google Scholar 

  41. Krol AJ, Roellig D, Dequeant ML, Tassy O, Glynn E, Hattem G, Mushegian A, Oates AC, Pourquie O (2011) Evolutionary plasticity of segmentation clock networks. Development 138(13):2783–2792

    Article  PubMed  CAS  Google Scholar 

  42. Lynch M (2007) The evolution of genetic networks by non-adaptive processes. Nat Rev Genet 8(10):803–813

    Article  PubMed  CAS  Google Scholar 

  43. Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138(4):760–773

    Article  PubMed  CAS  Google Scholar 

  44. Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 100(21):11980–11985

    Article  PubMed  CAS  Google Scholar 

  45. Matthews HR, Murphy RL, Fain GL, Lamb TD (1988) Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature 334(6177):67–69

    Article  PubMed  CAS  Google Scholar 

  46. McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68(2):283–302

    Article  PubMed  CAS  Google Scholar 

  47. Meinhardt H (2008) Models of biological pattern formation: from elementary steps to the organization of embryonic axes. Curr Top Dev Biol 81:1–63

    Article  PubMed  Google Scholar 

  48. Morimoto M, Takahashi Y, Endo M, Saga Y (2005) The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435(7040):354–359

    Article  PubMed  CAS  Google Scholar 

  49. Nakatani K, Yau KW (1988) Calcium and light adaptation in retinal rods and cones. Nature 334(6177):69–71

    Article  PubMed  CAS  Google Scholar 

  50. Nilsson DE, Pelger S (1994) A pessimistic estimate of the time required for an eye to evolve. Proc Biol Sci 256(1345):53–58

    Article  PubMed  CAS  Google Scholar 

  51. Novick A, Wiener M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA 43(7):553

    Article  PubMed  CAS  Google Scholar 

  52. Oginuma M, Takahashi Y, Kitajima S, Kiso M, Kanno J, Kimura A, Saga Y (2010) The oscillation of Notch activation, but not its boundary, is required for somite border formation and rostral-caudal patterning within a somite. Development 137(9):1515–1522

    Article  PubMed  CAS  Google Scholar 

  53. Ozbudak EM, Thattai M, Lim HN, Shraiman BI, van Oudenaarden A (2004) Multistability in the lactose utilization network of Escherichia coli. Nature 427(6976):737–740

    Article  PubMed  CAS  Google Scholar 

  54. Palmeirim I, Henrique D, Ish-Horowicz D, Pourquie O (1997) Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91(5):639–648

    Article  PubMed  CAS  Google Scholar 

  55. Peel AD, Chipman AD, Akam M (2005) Arthropod segmentation: beyond the Drosophila paradigm. Nat Rev Genet 6(12):905–916

    Article  PubMed  CAS  Google Scholar 

  56. Phillips R, Kondev J, Theriot J (2008) Physical biology of the cell, 1st edn. Garland Science, New York

    Google Scholar 

  57. Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR, Fay J (2007) Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS ONE 2(1):e153

    Article  PubMed  Google Scholar 

  58. Saga Y, Takeda H (2001) The making of the somite: molecular events in vertebrate segmentation. Nat Rev Genet 2(11):835–845

    Article  PubMed  CAS  Google Scholar 

  59. Sage R (2004) The evolution of C4 photosynthesis. New Phytologist 161:341–370

    Article  CAS  Google Scholar 

  60. Salazar-Ciudad I, Newman SA, Solé RV (2001) Phenotypic and dynamical transitions in model genetic networks, I. Emergence of patterns and genotype-phenotype relationships. Evol Dev 3(2):84–94

    CAS  Google Scholar 

  61. Salazar-Ciudad I, Solé RV, Newman SA (2001) Phenotypic and dynamical transitions in model genetic networks, II. Application to the evolution of segmentation mechanisms. Evol Dev 3(2):95–103

    CAS  Google Scholar 

  62. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68

    Article  PubMed  CAS  Google Scholar 

  63. Shimoni Y, Friedlander G, Hetzroni G, Niv G, Altuvia S, Biham O, Margalit H (2007) Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol Syst Biol 3:138

    Article  PubMed  Google Scholar 

  64. Soyer OS, Pfeiffer T, Bonhoeffer S (2006) Simulating the evolution of signal transduction pathways. J Theor Biol 241(2):223–232

    Article  PubMed  CAS  Google Scholar 

  65. Süel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nat Cell Biol 440(7083):545–550

    Google Scholar 

  66. Takahashi Y, Koizumi K, Takagi A, Kitajima S, Inoue T, Koseki H, Saga Y (2000) Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat Genet 25(4):390–396

    Article  PubMed  CAS  Google Scholar 

  67. Tirosh I, Wong KH, Barkai N, Struhl K (2011) Extensive divergence of yeast stress responses through transitions between induced and constitutive activation. Proc Natl Acad Sci USA 108(40):16693–16698

    Article  PubMed  CAS  Google Scholar 

  68. Tkačik G, Walczak AM (2011) Information transmission in genetic regulatory networks: a review. J Phys Condens Matter 23(15):153102

    Article  PubMed  Google Scholar 

  69. Turgay K, Hamoen LW, Venema G, Dubnau D (1997) Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Gene Dev 11(1):119–128

    Article  PubMed  CAS  Google Scholar 

  70. ten Tusscher KH, Hogeweg P (2011) Evolution of networks for body plan patterning; interplay of modularity, robustness and evolvability. PLoS Comput Biol 7(10):e1002208

    Article  PubMed  Google Scholar 

  71. Vakulenko S, Manu, Reinitz J, Radulescu O (2009) Size regulation in the segmentation of Drosophila: interacting interfaces between localized domains of gene expression ensure robust spatial patterning. Phys Rev Lett 103(16):168102

    Article  PubMed  Google Scholar 

  72. Wacker SA, Jansen HJ, McNulty CL, Houtzager E, Durston AJ (2004) Timed interactions between the Hox expressing non-organiser mesoderm and the Spemann organiser generate positional information during vertebrate gastrulation. Dev Biol 268(1):207–219

    Article  PubMed  CAS  Google Scholar 

  73. Wolpert L (2006) Principles of development. Oxford University Press, Oxford

    Google Scholar 

  74. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the VI international congress of genetics, vol 1, pp 356–366

    Google Scholar 

  75. Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H (2004) Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci USA 101(16):5934–5939

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Eric Siggia, Vincent Hakim, Olivier Pourquié, Bertrand Benazeraf, Alexander Aulehla, Ali Brivanlou, Nicolas Buchler, Alin Vonica, Aryeh Warmflash, and Francis Corson for, useful discussions. Tail bud picture of Fig. 8.4 was taken during a short stay in the Pourquié lab in Stowers Institute, Kansas City, and I further thank Olivier Pourquié for inviting and hosting me numerous times in his lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul François .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

François, P. (2012). Evolution In Silico: From Network Structure to Bifurcation Theory. In: Soyer, O. (eds) Evolutionary Systems Biology. Advances in Experimental Medicine and Biology, vol 751. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3567-9_8

Download citation

Publish with us

Policies and ethics