Evolutionary Principles Underlying Structure and Response Dynamics of Cellular Networks

Part of the Advances in Experimental Medicine and Biology book series (volume 751)

Abstract

The network view in systems biology, in conjunction with the continuing development of experimental technologies, is providing us with the key structural and dynamical features of both cell-wide and pathway-level regulatory, signaling and metabolic systems. These include for example modularity and presence of hub proteins at the structural level and ultrasensitivity and feedback control at the level of dynamics. The uncovering of such features, and the seeming commonality of some of them, makes many systems biologists believe that these could represent design principles that underpin cellular systems across organisms. Here, we argue that such claims on any observed feature requires an understanding of how it has emerged in evolution and how it can shape subsequent evolution. We review recent and past studies that aim to achieve such evolutionary understanding for observed features of cellular networks. We argue that this evolutionary framework could lead to deciphering evolutionary origin and relevance of proposed design principles, thereby allowing to predict their presence or absence in an organism based on its environment and biochemistry and their effect on its future evolution.

Keywords

Biomass Recombination Microbe Histidine Pyramid 

Notes

Acknowledgements

We would like to thank Maureen O’Malley, Juan Poyatos, and Richard Goldstein for their useful comments on this manuscript.

References

  1. 1.
    Akman OE, Rand DA Brown PE, Millar AJ (2010) Robustness from flexibility in the fungal circadian clock. BMC Syst Biol 4. doi:10.1186/1752–0509–4–88Google Scholar
  2. 2.
    Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406(6794). doi:10.1038/35019019Google Scholar
  3. 3.
    Alon U, Surette MG, Barkai N Leibler S (1999) Robustness in bacterial chemotaxis. Nature 406(6715). doi:10.1038/16483Google Scholar
  4. 4.
    Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science (New York, NY) 301(5633). doi:10.1126/science.1086391Google Scholar
  5. 5.
    Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control Oxford University Press, Oxford, New York p. 757Google Scholar
  6. 6.
    Artzy-Randrup Y, Fleishman SJ, Ben-Tal N, Stone L (2004) Comment on network motifs: simple building blocks of complex networks and superfamilies of evolved and designed networks. Science (New York, NY) 305(5687). doi:10.1126/science.1099334Google Scholar
  7. 7.
    Azevedo RB, Lohaus R, Srinivasan S, Dang KK, Burch CL (2006) Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440(7080). doi:10.1038/nature04488Google Scholar
  8. 8.
    Bagheri HC, Wagner GP (2004) Evolution of dominance in metabolic pathways. Genetics 168(3). doi:10.1534/genetics.104.028696Google Scholar
  9. 9.
    Barabasi AL, Albert R (1999) Emergence of Scaling in Random Networks. Science (New York, NY) 286(5439):509–512Google Scholar
  10. 10.
    Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2). doi:10.1038/nrg1272Google Scholar
  11. 11.
    Barik D, Baumann WT, Paul MR, Novak B, Tyson JJ (2010) A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol Syst Biol 6. doi:10.1038/msb.2010.55Google Scholar
  12. 12.
    Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387 (6636):913–917PubMedGoogle Scholar
  13. 13.
    Bashor CJ, Helman NC, Yan S, Lim WA (2008) Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science (New York, NY) 319(5869). doi:10.1126/science.1151153Google Scholar
  14. 14.
    Batchelor E, Goulian M (2003) Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc Natl Acad Sci USA 100(2). doi:10.1073/pnas.0234782100Google Scholar
  15. 15.
    Bergman A, Siegal ML (2003) Evolutionary capacitance as a general feature of complex gene networks. Nature 424(6948). doi:10.1038/nature01765Google Scholar
  16. 16.
    Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Nature 239:500–504PubMedGoogle Scholar
  17. 17.
    Bischofs IB, Hug JA, Liu AW, Wolf DM, Arkin AP (2009) Complexity in bacterial cell-cell communication: quorum signal integration and subpopulation signaling in the bacillus subtilis phosphorelay. Proc Natl Acad Sci USA 106(16). doi:10.1073/pnas.0810878106Google Scholar
  18. 18.
    Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature 449(7164). doi:10.1038/nature06247Google Scholar
  19. 19.
    Blank LM, Kuepfer L, Sauer U (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6(6). doi:10.1186/gb-2005–6–6-r49Google Scholar
  20. 20.
    Bray D (2003) molecular networks: the top-down view. Science (New York, NY) 301(5641). doi:10.1126/science.1089118Google Scholar
  21. 21.
    Bray D, Levin MD, Lipkow K (2007) The chemotactic behavior of computer-based surrogate bacteria. Curr Biol 17(1). doi:10.1016/j.cub.2006.11.027Google Scholar
  22. 22.
    Celani A, Vergassola M (2010) Bacterial strategies for chemotaxis response. Proc Natl Acad Sci USA. doi:10.1073/pnas.0909673107PubMedGoogle Scholar
  23. 23.
    Chickarmane V, Kholodenko BN, Sauro HM (2007) Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation. J Theor Biol 244(1). doi:10.1016/j.jtbi.2006.05.013Google Scholar
  24. 24.
    Clark DA, Grant LC (2005) The bacterial chemotactic response reflects a compromise between transient and steady-state behavior. Proc Natl Acad Sci USA 102(26). doi:10.1073/pnas.0407659102Google Scholar
  25. 25.
    Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287(5458):1652–1655PubMedGoogle Scholar
  26. 26.
    Cooper VS, Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407(6805). doi:10.1038/35037572Google Scholar
  27. 27.
    Cordero OX, Hogeweg P (2006) Feed-forward loop circuits as a side effect of genome evolution. Mol Biol Evol 23(10). doi:10.1093/molbev/msl060Google Scholar
  28. 28.
    Cornish-Bowden A (1987) Dominance is not inevitable. J Theor Biol 125(3):333–338PubMedGoogle Scholar
  29. 29.
    de Gennes P-G (2004) Chemotaxis: the role of internal delays. Eur Biophys J 33(8). doi:10.1007/s00249–004–0426-zGoogle Scholar
  30. 30.
    Del Vecchio D, Ninfa AJ, Sontag ED (2008) Modular cell biology: retroactivity and insulation. Mol Syst Biol 4. doi:10.1038/msb4100204Google Scholar
  31. 31.
    de Wit PJGM (2007) How plants recognize pathogens and defend themselves. Cell Mol Life Sci 64(21). doi:10.1007/s00018–007–7284–7Google Scholar
  32. 32.
    Egbert MD, Barandiaran XE, Di Paolo EA (2010) A minimal model of metabolism-based chemotaxis. PLoS Comput Biol 6(12). doi:10.1371/journal.pcbi.1001004Google Scholar
  33. 33.
    Endres RG, Wingreen NS (2006) Precise adaptation in bacterial chemotaxis through assistance neighborhoods. Proc Natl Acad Sci USA 103(35). doi:10.1073/pnas.0603101103Google Scholar
  34. 34.
    Espinosa-Soto C, Wagner A (2010) Specialization can drive the evolution of modularity. PLoS Comput Biol 6(3). doi:10.1371/journal.pcbi.1000719Google Scholar
  35. 35.
    Fisher RA (1928) The possible modification of the response of the wild type to recurrent mutations. Am Nat:115–126Google Scholar
  36. 36.
    Force A, Cresko WA, Pickett FB, Proulx SR, Amemiya C, Lynch M (2005) The origin of subfunctions and modular gene regulation. Genetics 170(1). doi:10.1534/genetics.104.027607Google Scholar
  37. 37.
    Foster KR (2011) The sociobiology of molecular systems. Nature Rev Genet 12(3). doi:10.1038/nrg2903Google Scholar
  38. 38.
    Foster KR, Shaulsky G, Strassmann JE, Queller DC, Thompson CRL (2004) Pleiotropy as a mechanism to stabilize cooperation. Nature 431(7009). doi:10.1038/nature02894Google Scholar
  39. 39.
    Freschi L, Courcelles M, Thibault P, Michnick SW, Landry CR (2011) Phosphorylation network rewiring by gene duplication. Mol Syst Biol 7. doi:10.1038/msb.2011.43Google Scholar
  40. 40.
    Gerhart J, Kirschner M (2007) The theory of facilitated variation. Proc Natl Acad Sci USA 104(1):8582PubMedGoogle Scholar
  41. 41.
    Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S others (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896). doi:10.1038/nature00935Google Scholar
  42. 42.
    Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78(11) 6840–6844PubMedGoogle Scholar
  43. 43.
    Goldstein RA, Soyer OS (2008) Evolution of taxis responses in virtual bacteria: non-adaptive dynamics. PLoS Comput Biol 4(5). doi:10.1371/journal.pcbi.1000084Google Scholar
  44. 44.
    Gomez-Uribe S, Verghese GC, Mirny LA (2007) Operating regimes of signaling cycles: statics, dynamics, and noise filtering. PLoS Comput Biol 3(12) 2487–2497Google Scholar
  45. 45.
    Gonze D, Halloy J, Goldbeter A (2002) Robustness of circadian rhythms with respect to molecular noise. Proc Natal Acad Sci USA 99(2). doi:10.1073/pnas.022628299Google Scholar
  46. 46.
    Gould SJ (1985) Not necessarily a wing: Which came first, the function or the form? Nat History 94:10, p12Google Scholar
  47. 47.
    Gould SJ, Vrba ES (1982) Exaptation-a missing term in the science of form. Paleobiology: 4–15Google Scholar
  48. 48.
    Groban ES, Clarke EJ, Salis HM, Miller SM, Voigt CA (2009) Kinetic buffering of cross talk between bacterial two-component sensors. J Mol Biol 390(3). doi:10.1016/j.jmb.2009.05.007Google Scholar
  49. 49.
    Grossniklaus U, Madhusudhan MS, Nanjundiah V (1996) Nonlinear enzyme kinetics can lead to high metabolic flux control coefficients: implications for the evolution of dominance. J Theor Biol 182(3). doi:10.1006/jtbi.1996.0167Google Scholar
  50. 50.
    Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421(6918). doi:10.1038/nature01198Google Scholar
  51. 51.
    Guelzim N, Bottani S, Bourgine P, Képès F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31(1). doi:10.1038/ng873Google Scholar
  52. 52.
    Hamer R, Chen PY, Armitage JP Reinert G, Deane CM (2010) Deciphering chemotaxis pathways using cross species comparisons. BMC Syst Biol 4. doi:10.1186/1752–0509–4–3Google Scholar
  53. 53.
    Hao N, Nayak S, Behar M, Shanks RH, Nagiec MJ, Errede B, Hasty J, Elston TC, Dohlman HG (2008) Regulation of cell signaling dynamics by the protein kinase-scaffold Ste5. Mol Cell 30(5). doi:10.1016/j.molcel.2008.04.016Google Scholar
  54. 54.
    Harrison R, Papp B, Pál C, Oliver SG, Delneri D (2007) Plasticity of genetic interactions in metabolic networks of yeast. Proc Natal Acad Sci USA 104(7). doi:10.1073/pnas.0607153104Google Scholar
  55. 55.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(6761). doi:10.1038/35011540Google Scholar
  56. 56.
    Haseltine EL, Arnold FH (2007) Synthetic gene circuits: design with directed evolution. Ann Rev Biophys Biomol Struct 36. doi:10.1146/annurev.biophys.36.040306.132600Google Scholar
  57. 57.
    Heinrich R, Schuster S (1996) The regulation of cellular systems. Springer, USGoogle Scholar
  58. 58.
    Heinrich R, Montero F, Klipp E, Waddell TG, Melendez-Hevia E (1997) Theoretical approaches to the evolutionary optimization of glycolysis: thermodynamic and kinetic constraints. Eur J Biochem/FEBS 243(1–2):191Google Scholar
  59. 59.
    Heinrich R, Schuster S, Holzhütter HG (1991) Mathematical analysis of enzymic reaction systems using optimization principles. Eur J Biochem 201(1):1–21PubMedGoogle Scholar
  60. 60.
    Hintze A, Adami C (2008) Evolution of complex modular biological networks. PLoS Comput Biol 4(2):e23PubMedGoogle Scholar
  61. 61.
    Hoffmann A, Levchenko A Scott ML, Baltimore D (2002) The Ikappab-Nf-Kappab signaling module: temporal control and selective gene activation. Science (New York, NY) 298(5596). doi:10.1126/science.1071914Google Scholar
  62. 62.
    Hong RL, Sommer RJ (2006) Chemoattraction in pristionchus nematodes and implications for insect recognition. Curr Biol 16(23). doi:10.1016/j.cub.2006.10.031Google Scholar
  63. 63.
    Ingolia NT (2004) Topology and robustness in the drosophila segment polarity network. PLoS Biol 2(6). doi:10.1371/journal.pbio.0020123Google Scholar
  64. 64.
    Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654PubMedGoogle Scholar
  65. 65.
    Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97(3–4):639–666PubMedGoogle Scholar
  66. 66.
    Kacser H, Beeby R (1984) Evolution of catalytic proteins or on the origin of enzyme species by means of natural selection. J Mol Evol 20(1):38–51PubMedGoogle Scholar
  67. 67.
    Kalir S, Mangan S, Alon U (2005) A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli. Mol Syst Biol 1. doi:10.1038/msb4100010Google Scholar
  68. 68.
    Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, others (2003) Systematic functional analysis of the Caenorhabditis elegans genome using Rnai. Nature 421(6920):231–237Google Scholar
  69. 69.
    Kaneko K (2007) Evolution of robustness to noise and mutation in gene expression dynamics. PloS One 2(5). doi:10.1371/journal.pone.0000434Google Scholar
  70. 70.
    Kaneko K (2011) Proportionality between variances in gene expression induced by noise and mutation: consequence of evolutionary robustness. BMC Evol Biol 11. doi:10.1186/1471–2148–11–27Google Scholar
  71. 71.
    Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natal Acad Sci USA 102(39). doi:10.1073/pnas.0503610102Google Scholar
  72. 72.
    Keller EF (2005) Revisiting “scale-free” networks. BioEssays 27(10). doi:10.1002/bies.20294Google Scholar
  73. 73.
    Kingslover JG, Koehl MAR (1985) Aerodynamics, thermoregulation, and the evolution of insect wings: differential scaling and evolutionary change. Int J Org Evol:488–504Google Scholar
  74. 74.
    Klipp E, Heinrich R, Holzhütter HG (2002) Prediction of temporal gene expression. Eur J Biochem 269(22)Google Scholar
  75. 75.
    Kollmann M, Løvdok L, Bartholomé K, Timmer J, Sourjik V (2005) Design principles of a bacterial signalling network. Nature 438(7067). doi:10.1038/nature04228Google Scholar
  76. 76.
    Kühner S, van Noort V, Betts MJ, Leo-Macias A, Batisse C, Rode M, Yamada T, others (2009) Proteome organization in a genome-reduced bacterium. Science (New York, NY) 326(5957). doi:10.1126/science.1176343Google Scholar
  77. 77.
    LaPorte DC, Walsh K, Koshland DE (1984) The branch point effect. Ultrasensitivity and subsensitivity to metabolic control. J Biol Chem 259(22) 14068–14075Google Scholar
  78. 78.
    Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799PubMedGoogle Scholar
  79. 79.
    Legewie S, Herzel H, Westerhoff HV, Blüthgen N (2008) Recurrent design patterns in the feedback regulation of the mammalian signalling network. Mol Syst Biol 4. doi:10.1038/msb.2008.29Google Scholar
  80. 80.
    Lipson H, Pollack JB, Suh NP (2002) On the origin of modular variation. Int J Org Evol 56(8):1549–1556Google Scholar
  81. 81.
    Lynch M (2007a) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natal Acad Sci USA (1):8597–8604Google Scholar
  82. 82.
    Lynch M (2007b) The evolution of genetic networks by non-adaptive processes. Nat Rev Genet 8(10). doi:10.1038/nrg2192Google Scholar
  83. 83.
    Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natal Acad Sci USA 100(21):11980Google Scholar
  84. 84.
    Mangan S, Itzkovitz S, Zaslaver A, Alon U (2006) The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J Mol Biol 356(5). doi:10.1016/j.jmb.2005.12.003Google Scholar
  85. 85.
    Marques JT, Carthew RW (2007) A call to arms: coevolution of animal viruses and host innate immune responses. Trends Genet 23(7). doi:10.1016/j.tig.2007.04.004Google Scholar
  86. 86.
    Milo R, Shen-Orr S, Itzkovitz S Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science (New York, NY) 298(5594):824Google Scholar
  87. 87.
    Moriya H, Shimizu-Yoshida Y, Kitano H (2006) In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. PLoS Genet 2(7). doi:10.1371/journal.pgen.0020111Google Scholar
  88. 88.
    Navlakha S, Kingsford C (2011) Network archaeology: uncovering ancient networks from present-day interactions. PLoS Comput Biol 7(4). doi:10.1371/journal.pcbi.1001119Google Scholar
  89. 89.
    Nesse RM, Stearns SC (2008) The great opportunity: evolutionary applications to medicine and public health. Evol Appl 1(1):28–48Google Scholar
  90. 90.
    Nikolaou E, Agrafioti I, Stumpf M, Quinn J, Stansfield I, Brown AJ (2009) Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 9. doi:10.1186/1471–2148–9–44Google Scholar
  91. 91.
    Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388(6638). doi:10.1038/40618Google Scholar
  92. 92.
    Ortega F, Garcés JL, Mas F, Kholodenko BN, Cascante M (2006) Bistability from double phosphorylation in signal transduction. Kinetic and structural requirements. FEBS J 273(17). doi:10.1111/j.1742–4658.2006.05394.xGoogle Scholar
  93. 93.
    O’Shaughnessy EC, Palani S, Collins JJ, Sarkar CA (2011) Tunable signal processing in synthetic MAP kinase cascades. Cell 144(1). doi:10.1016/j.cell.2010.12.014Google Scholar
  94. 94.
    Papp B, Pál C, Hurst LD (2004) Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429(6992). doi:10.1038/nature02636Google Scholar
  95. 95.
    Papp B, Teusink B, Notebaart RA (2009) A critical view of metabolic network adaptations. HFSP J 3(1). doi:10.2976/1.3020599Google Scholar
  96. 96.
    Papp B, Notebaart RA, Pál C (2011) Systems-biology approaches for predicting genomic evolution Nat Rev Genet 12(9). doi:10.1038/nrg3033Google Scholar
  97. 97.
    Parter M, Kashtan N, Alon U (2008) Facilitated variation: how evolution learns from past environments to generalize to new environments. PLoS Comput Biol 4(11). doi:10.1371/journal.pcbi.1000206Google Scholar
  98. 98.
    Pfeiffer T, Soyer OS, Bonhoeffer S (2005) The evolution of connectivity in metabolic networks. PLoS Biol 3(7). doi:10.1371/journal.pbio.0030228Google Scholar
  99. 99.
    Porter SL, Wadhams GH, Armitage JP (2008) Rhodobacter sphaeroides: complexity in chemotactic signalling. Trends Microbiol 16(6) doi:10.1016/j.tim.2008.02.006Google Scholar
  100. 100.
    Prill RJ, Iglesias PA, Levchenko A (2005) Dynamic properties of network motifs contribute to biological network organization. PLoS Biol 3(11). doi:10.1371/journal.pbio.0030343Google Scholar
  101. 101.
    Rao CV, Kirby JR, Arkin AP (2004) Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol 2(2). doi:10.1371/journal.pbio.0020049Google Scholar
  102. 102.
    Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science (New York, NY) 297(5586). doi:10.1126/science.1073374Google Scholar
  103. 103.
    Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa. Nat Immunol 3(11):1041–1047PubMedGoogle Scholar
  104. 104.
    Salathé M, Soyer OS (2008) Parasites lead to evolution of robustness against gene loss in host signaling networks. Mol Syst Biol 4. doi:10.1038/msb.2008.44Google Scholar
  105. 105.
    Salathé M, May RM, Bonhoeffer S (2005) The evolution of network topology by selective removal. J R Soc Interface 2(5). doi:10.1098/rsif.2005.0072Google Scholar
  106. 106.
    Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459(7250). doi:10.1038/nature08122Google Scholar
  107. 107.
    Schmid-Hempel P, Ebert D (2003) On the evolutionary ecology of specific immune defence. Trend Ecol Evol 18(1):27–32Google Scholar
  108. 108.
    Schmitt R (2002) Sinorhizobial chemotaxis: a departure from the enterobacterial paradigm. Microbiology (Reading, England) 148Pt 3:627–31Google Scholar
  109. 109.
    Schnitzer MJ (1993) Theory of continuum random walks and application to chemotaxis. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 48(4):2553–2568PubMedGoogle Scholar
  110. 110.
    Shinar G, Milo R, Martínez MR, Alon U (2007) Input output robustness in simple bacterial signaling systems. Proc Natl Acad Sci USA 104(50). doi:10.1073/pnas.0706792104Google Scholar
  111. 111.
    Siegal ML, Bergman A (2002) Waddington’s canalization revisited: developmental stability and evolution. Proc Natl Acad Sci USA 99(16). doi:10.1073/pnas.102303999Google Scholar
  112. 112.
    Silva de E Thorne T, Ingram P, Agrafioti I, Swire J, Wiuf C, Stumpf MP (2006) The effects of incomplete protein interaction data on structural and evolutionary inferences. BMC Biol 4. doi:10.1186/1741–7007–4–39Google Scholar
  113. 113.
    Solé RV, Valverde S (2008) Spontaneous emergence of modularity in cellular networks. J R Soc Interface 5(18). doi:10.1098/rsif.2007.1108Google Scholar
  114. 114.
    Sourjik V, Berg HC (2002) Binding of the Escherichia coli response regulator chey to its target measured in vivo by fluorescence resonance energy transfer. Proc Natl Acad Sci USA 99(20). doi:10.1073/pnas.192463199Google Scholar
  115. 115.
    Soyer OS (2007) Emergence and maintenance of functional modules in signaling pathways. BMC Evol Biol 7. doi:10.1186/1471–2148–7–205Google Scholar
  116. 116.
    Soyer OS, Kuwahara H, Csikász-Nagy A (2009) Regulating the total level of a signaling protein can vary its dynamics in a range from switch like ultrasensitivity to adaptive responses. FEBS J 276. doi:10.1111/j.1742–4658.2009.07054.xGoogle Scholar
  117. 117.
    Soyer OS, Goldstein RA (2011) Evolution of response dynamics underlying bacterial chemotaxis. BMC Evol Biol 11. doi:10.1186/1471–2148–11–240Google Scholar
  118. 118.
    Soyer OS, Bonhoeffer S (2006) Evolution of complexity in signaling pathways. Proc Natl Acad Sci USA 103(44). doi:10.1073/pnas.0604449103Google Scholar
  119. 119.
    Soyer OS, Pfeiffer T (2010) Evolution under fluctuating environments explains observed robustness in metabolic networks. PLoS Comput Biol 6(8). doi:10.1371/journal.pcbi.1000907Google Scholar
  120. 120.
    Stumpf MPH, Wiuf C, May RM (2005) Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc Natl Acad Sci USA 102(12):4221PubMedGoogle Scholar
  121. 121.
    Troein C, Ahrén D, Krogh M, Peterson C (2007) Is transcriptional regulation of metabolic pathways an optimal strategy for fitness? PLoS One 2(9). doi:10.1371/journal.pone.0000855Google Scholar
  122. 122.
    Troein C, Locke JCW, Turner MS, Millar AJ (2009) Weather and seasons together demand complex biological clocks. Curr Biol 19(22). doi:10.1016/j.cub.2009.09.024Google Scholar
  123. 123.
    Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231PubMedGoogle Scholar
  124. 124.
    Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627PubMedGoogle Scholar
  125. 125.
    van Noort V, Berend S, Huynen MA (2004) The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep 5(3). doi:10.1038/sj.embor.7400090Google Scholar
  126. 126.
    Visser de JA, Hermisson J, Wagner GP, Meyers LA, Bagheri-Chaichian H, Blanchard JL, Chao L, others (2003) Perspective: evolution and detection of genetic robustness. Int J Org Evol 57(9):1959–1972Google Scholar
  127. 127.
    Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150(3811):563Google Scholar
  128. 128.
    Wagner A (2000a) Robustness against mutations in genetic networks of yeast. Nat Genet 24(4). doi:10.1038/74174Google Scholar
  129. 129.
    Wagner A (2000) The role of population size, pleiotropy and fitness effects of mutations in the evolution of overlapping gene functions. Genetics 154(3):1389–401PubMedGoogle Scholar
  130. 130.
    Wagner A (2005) Distributed robustness versus redundancy as causes of mutational robustness. Bioessays 27(2). doi:10.1002/bies.20170Google Scholar
  131. 131.
    Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution Int J Org Evol 50(3):967-976Google Scholar
  132. 132.
    Walhout AJM, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA, Thierry-Mieg N, Vidal M (2000) Protein interaction mapping in C. Elegans using proteins involved in vulval development. Science 287(5450):116Google Scholar
  133. 133.
    Wang Z, Zhang J (2009) Abundant indispensable redundancies in cellular metabolic networks. Genome Biol Evol 1:23–33. doi:10.1093/gbe/evp002PubMedGoogle Scholar
  134. 134.
    Wang Z, Zhang J (2011) PNAS plus: impact of gene expression noise on organismal fitness and the efficacy of natural selection. Proc Natl Acad Sci USA 108(16). doi:10.1073/pnas.1100059108Google Scholar
  135. 135.
    Wessely F, Bartl M, Guthke R, Li P, Schuster S, Kaleta C (2011) Optimal regulatory strategies for metabolic pathways in Escherichia coli depending on protein costs. Mol Syst Biol 7. doi:10.1038/msb.2011.46Google Scholar
  136. 136.
    Wright S (1934) Physiological and evolutionary theories of dominance. Am Nat 68(714):24–53Google Scholar
  137. 137.
    Wuichet K, Zhulin IgorB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3(128):ra50Google Scholar
  138. 138.
    Xavier JB, Kim W, Foster KR (2011) A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol Microbiol 79(1). doi:10.1111/j.1365–2958.2010.07436.xGoogle Scholar
  139. 139.
    Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97(9):4649–4653PubMedGoogle Scholar
  140. 140.
    Yu H, Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci USA 103(40):14724PubMedGoogle Scholar
  141. 141.
    Zhang Z, Qian W, Zhang J (2009) Positive selection for elevated gene expression noise in yeast Mol Syst Biol 5. doi:10.1038/msb.2009.58Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Systems Biology Program, College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations