Skip to main content

Substrates of the Plasminogen Activator Protease of Yersinia pestis

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 954))

Abstract

The plasminogen activator protease (Pla) of Yersinia pestis is a critical virulence determinant in the progression of both bubonic and pneumonic plague. A member of the omptin family of Gram-negative transmembrane proteases, Pla forms a conserved β-barrel fold in the bacterial outer membrane which permits the interaction of the protease with target substrates for cleavage. In vitro studies have identified numerous mammalian host targets, many of which comprise components of the coagulation and fibrinolytic cascades. Through the cleavage of host plasminogen, α2-antiplasmin, plasminogen activator inhibitor-1 (PAI-1), thrombin-activatable fibrinolysis inhibitor, and tissue factor pathway inhibitor, Pla is hypothesized to disrupt coagulation pathways that are initiated as a natural host response to infection and inflammation. The clearance of fibrin clots, enhanced by the activities of Pla, may alleviate physical barriers to bacterial dissemination and inhibit the recruitment of immune cells. Subversion of innate immunity may be further potentiated through the Pla-dependent inactivation of complement protein C3 and cationic antimicrobial peptides. Currently, the precise molecular mechanisms of Pla-conferred virulence in vivo remain unclear and likely vary based upon route of infection. However, evidence supports Pla as a versatile virulence factor that may specifically cleave unique subsets of host proteins during the progression of bubonic and pneumonic plague.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achtman M, Zurth K, Morelli G et al (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 24:14043–14048

    Article  Google Scholar 

  • Akopyan K, Edgren T, Wang-Edgren H et al (2011) Translocation of surface-localized effectors in type III secretion. Proc Natl Acad Sci U S A 4:1639–1644

    Article  Google Scholar 

  • Beesley ED, Brubaker RR, Janssen WA et al (1967) Pesticins. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol 1:19–26

    Google Scholar 

  • Bergmann S, Hammerschmidt S (2007) Fibrinolysis and host response in bacterial infections. Thromb Haemost 3:512–520

    Google Scholar 

  • Bishop JL, Finlay BB (2006) Friend or foe? Antimicrobial peptides trigger pathogen virulence. Trends Mol Med 1:3–6

    Article  Google Scholar 

  • Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 1:3–11

    Article  Google Scholar 

  • Cornelius CA, Quenee LE, Elli D et al (2009) Yersinia pestis IS1541 transposition provides for escape from plague immunity. Infect Immun 5:1807–1816

    Article  Google Scholar 

  • Cowan C, Jones HA, Kaya YH et al (2000) Invasion of epithelial cells by Yersinia pestis: evidence for a Y. pestis-specific invasin. Infect Immun 8:4523–4530

    Article  Google Scholar 

  • Degen JL, Bugge TH, Goguen JD (2007) Fibrin and fibrinolysis in infection and host defense. J Thromb Haemost 1:24–31

    Article  Google Scholar 

  • Dekker N, Cox RC, Kramer RA et al (2001) Substrate specificity of the integral membrane protease OmpT determined by spatially addressed peptide libraries. Biochemistry 6:1694–1701

    Article  Google Scholar 

  • Felek S, Tsang TM, Krukonis ES (2010) Three Yersinia pestis adhesins facilitate Yop delivery to eukaryotic cells and contribute to plague virulence. Infect Immun 10:4134–4150

    Article  Google Scholar 

  • Flick MJ, Du X, Witte DP et al (2004) Leukocyte engagement of fibrin(ogen) via the integrin receptor αMβ2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest 11:1596–1606

    Google Scholar 

  • Forsyth CB, Solovjov DA, Ugarova TP et al (2001) Integrin αMβ2-mediated cell migration to fibrinogen and its recognition peptides. J Exp Med 10:1123–1133

    Article  Google Scholar 

  • Galvan EM, Lasaro MA, Schifferli DM (2008) Capsular antigen fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect Immun 4:1456–1464

    Article  Google Scholar 

  • Ghosh AK, Vaughan DE (2011) PAI-1 in tissue fibrosis. J Cell Physiol 227(2):493–507

    Article  Google Scholar 

  • Guina T, Yi EC, Wang H et al (2000) A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 14:4077–4086

    Article  Google Scholar 

  • Hackeng TM, Sere KM, Tans G et al (2006) Protein S stimulates inhibition of the tissue factor pathway by tissue factor pathway inhibitor. Proc Natl Acad Sci U S A 9:3106–3111

    Article  Google Scholar 

  • Haiko J, Suomalainen M, Ojala T et al (2009) Invited review: breaking barriers—attack on innate immune defences by omptin surface proteases of enterobacterial pathogens. Innate Immun 2:67–80

    Article  Google Scholar 

  • Haiko J, Laakkonen L, Juuti K et al (2010) The omptins of Yersinia pestis and Salmonella enterica cleave the reactive center loop of plasminogen activator inhibitor 1. J Bacteriol 18:4553–4561

    Article  Google Scholar 

  • Kasthuri RS, Glover SL, Boles J et al (2010) Tissue factor and tissue factor pathway inhibitor as key regulators of global hemostasis: measurement of their levels in coagulation assays. Semin Thromb Hemost 7:764–771

    Article  Google Scholar 

  • Kukkonen M, Lahteenmaki K, Suomalainen M et al (2001) Protein regions important for plasminogen activation and inactivation of α2-antiplasmin in the surface protease Pla of Yersinia pestis. Mol Microbiol 5:1097–1111

    Article  Google Scholar 

  • Lathem WW, Crosby SD, Miller VL et al (2005) Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci U S A 49:17786–17791

    Article  Google Scholar 

  • Lathem WW, Price PA, Miller VL et al (2007) A plasminogen-activating protease specifically controls the development of primary pneumonic plague. Science 5811:509–513

    Article  Google Scholar 

  • Levi M, van der Poll T, Buller HR (2004) Bidirectional relation between inflammation and coagulation. Circulation 22:2698–2704

    Article  Google Scholar 

  • Lockett JM, Mast AE (2002) Contribution of regions distal to glycine-160 to the anticoagulant activity of tissue factor pathway inhibitor. Biochemistry 15:4989–4997

    Article  Google Scholar 

  • Marx PF, Dawson PE, Bouma BN et al (2002) Plasmin-mediated activation and inactivation of thrombin-activatable fibrinolysis inhibitor. Biochemistry 21:6688–6696

    Article  Google Scholar 

  • Matsumoto H, Young GM (2009) Translocated effectors of Yersinia. Curr Opin Microbiol 1:94–100

    Article  Google Scholar 

  • McCarter JD, Stephens D, Shoemaker K et al (2004) Substrate specificity of the Escherichia coli outer membrane protease OmpT. J Bacteriol 17:5919–5925

    Article  Google Scholar 

  • Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 1:35–66

    Google Scholar 

  • Ponting CP, Marshall JM, Cederholm-Williams SA (1992) Plasminogen: a structural review. Blood Coagul Fibrinolysis 5:605–614

    Article  Google Scholar 

  • Ramu P, Tanskanen R, Holmberg M et al (2007) The ­surface protease PgtE of Salmonella enterica affects complement activity by proteolytically cleaving C3b, C4b and C5. FEBS Lett 9:1716–1720

    Article  Google Scholar 

  • Renckens R, Roelofs JJ, Bonta PI et al (2007) Plasminogen activator inhibitor type 1 is protective during severe Gram-negative pneumonia. Blood 4:1593–1601

    Article  Google Scholar 

  • Robbins KC, Summaria L, Hsieh B et al (1967) The ­peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin. J Biol Chem 10:2333–2342

    Google Scholar 

  • Sebbane F, Jarrett CO, Gardner D et al (2006) Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci U S A 14:5526–5530

    Article  Google Scholar 

  • Sodeinde OA, Goguen JD (1988) Genetic analysis of the 9.5-kilobase virulence plasmid of Yersinia pestis. Infect Immun 10:2743–2748

    Google Scholar 

  • Sodeinde OA, Goguen JD (1989) Nucleotide sequence of the plasminogen activator gene of Yersinia pestis: relationship to ompT of Escherichia coli and gene E of Salmonella typhimurium. Infect Immun 5:1517–1523

    Google Scholar 

  • Sodeinde OA, Sample AK, Brubaker RR et al (1988) Plasminogen activator/coagulase gene of Yersinia pestis is responsible for degradation of plasmid-encoded outer membrane proteins. Infect Immun 10:2749–2752

    Google Scholar 

  • Sodeinde OA, Subrahmanyam YV, Stark K et al (1992) A surface protease and the invasive character of plague. Science 5084:1004–1007

    Article  Google Scholar 

  • Szaba FM, Smiley ST (2002) Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 3:1053–1059

    Article  Google Scholar 

  • Valls Seron M, De Haiko J, De Groot PG et al (2010) Thrombin-activatable fibrinolysis inhibitor is degraded by Salmonella enterica and Yersinia pestis. J Thromb Haemost 10:2232–2240

    Article  Google Scholar 

  • Vaughan DE (2005) PAI-1 and atherothrombosis. J Thromb Haemost 8:1879–1883

    Article  Google Scholar 

  • Walport MJ (2001) Complement. First of two parts. N Engl J Med 14:1058–1066

    Google Scholar 

  • Ward PA, Newman LJ (1969) A neutrophil chemotactic factor from human C′5. J Immunol 1:93–99

    Google Scholar 

  • Wiman B, Collen D (1978) On the kinetics of the reaction between human antiplasmin and plasmin. Eur J Biochem 2:573–578

    Article  Google Scholar 

  • Yun TH, Cott JE, Tapping RI et al (2009) Proteolytic inactivation of tissue factor pathway inhibitor by bacterial omptins. Blood 5:1139–1148

    Google Scholar 

  • Zhang SS, Park CG, Zhang P et al (2008) Plasminogen activator Pla of Yersinia pestis utilizes murine DEC-205 (CD205) as a receptor to promote dissemination. J Biol Chem 46:31511–31521

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jay Degen for helpful discussions. This work was supported by NIH/NIAID grant R01 AI093727 to WWL. AJC was supported by NIH/NIAID grant T32 AI007476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wyndham W. Lathem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Caulfield, A.J., Lathem, W.W. (2012). Substrates of the Plasminogen Activator Protease of Yersinia pestis . In: de Almeida, A., Leal, N. (eds) Advances in Yersinia Research. Advances in Experimental Medicine and Biology, vol 954. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3561-7_32

Download citation

Publish with us

Policies and ethics