Skip to main content

Factors Affecting the Spread and Maintenance of Plague

  • Conference paper
  • First Online:
Advances in Yersinia Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 954))

Abstract

Plague is characterized by its potentially explosive spread during human epidemics and rodent epizootics. Recent research has suggested how this spread is likely to occur and what factors are associated with the onset of plague outbreaks and the continued spread of the disease. Among the apparent drivers of these outbreaks are climatic variables, host and vector densities, percolation thresholds, and the ability of many fleas to transmit efficiently soon after taking an infectious blood meal and before Yersinia pestis biofilm-related blockages appear in their guts. This presentation discusses each of these topics and their likely contribution to the rapid spread of plague to humans and in natural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacot AW, Martin CJ (1914) Observations on the mechanism of the transmission of plague by fleas. J. Hyg. London 13(Suppl. III):423–39

    Google Scholar 

  • Bacot AW (1915) Further notes on the mechanism of the transmission of plague by fleas. J Hygiene. Plague Suppl.4:14774–776

    Google Scholar 

  • Barnes AM (1982) Surveillance and control of bubonic plague in the United States. Symp Zool Soc Lond 50:237–270

    Google Scholar 

  • Ben Ari T, Gershunov A, Gage KL et al (2008) Human plague in the US: the importance of regional and local climate. Biol Lett 4:737–740

    Article  PubMed  Google Scholar 

  • Ben Ari T, Gershunov A, Rouyer T et al (2010) Interannual variability of human plague occurrence in the western U.S. explained by tropical and North Pacific Ocean climate variability. Am J Trop Med Hyg 83:624–663

    Article  Google Scholar 

  • Ben Ari T, Neerinckx S, Gage KL et al (2011) Plague and climate: scales matter. PLoS Pathog 7(9):e1002160. doi:10.1371/journal.ppat.1002160

    Article  PubMed  CAS  Google Scholar 

  • Bibikova VA (1977) Contemporary views on the interrelationships between fleas and the pathogens of human and animal diseases. Annu. Rev. Entomol. 22:23–32

    Google Scholar 

  • Biggins DE, Godbey JL, Gage KL et al (2010) Vector control improves survival of three species of prairie dogs (Cynomys) in areas considered enzootic for plague. Vector Borne Zoonotic Dis 10:17–26

    Article  PubMed  Google Scholar 

  • Blanc G (1956) Une opinion non conformiste sur le mode de transmission de la peste. Rev Hyg Med Soc 4(6):535–562

    PubMed  CAS  Google Scholar 

  • Brinkerhoff R, Collinge S, Ray C et al (2010) Rodent and flea abundance fail to predict a plague epizootic in black-tailed prairie dogs. Vector Borne Zoonotic Dis 10:47–52

    Article  PubMed  Google Scholar 

  • Brooks RS-J (1917) LXXXIV. The influence of saturation deficiency and of temperature on the course of epidemic plague. J Hyg (Lond) 15:881–899

    CAS  Google Scholar 

  • Brown HE, Ettestad P, Reynolds PJ et al (2010) Climatic predictors of the intra- and inter-annual distributions of plague cases in New Mexico based on 29 years of animal-based surveillance data. Am J Trop Med Hyg 82:95–102

    Article  PubMed  Google Scholar 

  • Burroughs AL (1947) Sylvatic plague studies: the vector efficiency of nine species of fleas compared with Xenopsylla cheopis. J Hyg 43:371–396

    Article  Google Scholar 

  • Burroughs AL (1953) Sylvatic plague studies: X. Survival of rodent fleas in the laboratory. Parasitology 43:35–48

    Article  PubMed  CAS  Google Scholar 

  • Buxton PA (1938) Quantitative studies on the biology of Xenopsylla cheopis (Siphonaptera). Indian J Med Res 26:505–530

    Google Scholar 

  • Carniel E (2003) Evolution of pathogenic Yersinia, some lights in the dark. Adv Exp Med Biol 529:3–12

    Article  PubMed  Google Scholar 

  • Carniel E (2008) Plague today. Med Hist Suppl 27:115–122

    PubMed  Google Scholar 

  • Cavanaugh DC (1971) Specific effect of temperature upon transmission of the plague bacillus by the oriental rat flea, Xenopsylla cheopis. Am J Trop Med Hyg 20:264–273

    PubMed  CAS  Google Scholar 

  • Cavanaugh DC, Marshall JD Jr (1972) The influence of climate on the seasonal prevalence of plague in the Republic of Vietnam. J. Wildl. Dis. 8:85–94

    Google Scholar 

  • Cavanaugh DC, Williams JE (1980) Plague: some ecological interrelationships. In: Traub R, Starcke H (eds) Fleas. A.A. Balkema, Rotterdam

    Google Scholar 

  • Collinge SK, Johnson WC, Ray C et al (2005a) Testing the generality of a trophic-cascade model for plague. Ecohealth 2:1–11

    Article  Google Scholar 

  • Collinge SK, Johnson WC, Ray C et al (2005b) Landscape structure and plague occurrence in black-tailed prairie dogs. Landsc Ecol 20:941–955

    Article  Google Scholar 

  • Craven RB, Maupin GO, Beard ML et al (1993) Reported cases of human plague infections in the United States, 1970-1991, 1993. J Med Entomol 30:758–761

    PubMed  CAS  Google Scholar 

  • Cully JF, Williams ES (2001) Interspecific comparisons of sylvatic plague in prairie dogs. J Mammal 82:894–905

    Article  Google Scholar 

  • Davis S, Begon M, De Bruyn L et al (2004) Predictive thresholds for plague in Kazakhstan. Science 304:736–738

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Leirs H, Viljugrein H (2007) Empirical assessment of a threshold model for sylvatic plague. J R Soc Interface 4:649–657

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Trapman P, Leirs H et al (2008) The abundance threshold for plague as a critical percolation phenomenon. Nature 454:634–637

    Article  PubMed  CAS  Google Scholar 

  • Dennis DT (1998) Plague as an emerging disease. In: Scheld WM, Craig WA, Hughes JM (eds) Emerging infections, vol 2. ASM Press, Washington, DC

    Google Scholar 

  • Eisen RJ, Gage KL (2009) Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods. Vet Res 40:1

    Article  PubMed  Google Scholar 

  • Eisen RJ, Gage KL (2011) Transmission of flea-borne zoonotic agents. Annu Rev Entomol 57:61–82

    Article  PubMed  Google Scholar 

  • Eisen RJ, Bearden SW, Wilder AP et al (2006) Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci U S A 103:15380–15385

    Article  PubMed  CAS  Google Scholar 

  • Eisen RJ, Lowell JL, Montenieri JA (2007a) Temporal dynamics of early-phase transmission of Yersinia pestis by unblocked fleas: secondary infectious feeds prolong efficient transmission by Oropsylla montana (Siphonaptera: Ceratophyllidae). J Med Entomol 44:672–677

    Article  PubMed  Google Scholar 

  • Eisen RJ, Wilder AP, Bearden SW et al (2007b) Early-phase transmission of Yersinia pestis by unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas. J Med Entomol 44:678–682

    Article  PubMed  Google Scholar 

  • Eisen RJ, Borchert JN, Holmes JL et al (2008a) Early-phase transmission of Yersinia pestis by cat fleas (Ctenocephalides felis) and their potential role as ­vectors in a plague endemic region of Uganda. Am J Trop Med Hyg 78:949–956

    PubMed  Google Scholar 

  • Eisen RJ, Holmes JL, Schotthoefer AM et al (2008b) Demonstration of early-phase transmission of Yersinia pestis by the mouse flea, Aetheca wagneri (Siphonaptera: Ceratophyllidae), and implications for the role of deer mice as enzootic reservoirs. J Med Entomol 45:1160–1164

    Article  PubMed  Google Scholar 

  • Eisen RJ, Eisen L, Gage KL (2009) Studies of vector competency and efficiency of North American fleas for Yersinia pestis: state of the field and future research needs. J Med Entomol 46:737–744

    Article  PubMed  Google Scholar 

  • Ell SR (1980) Interhuman transmission of medieval plague. Bull Hist Med 54:497–510

    PubMed  CAS  Google Scholar 

  • Engelthaler DM, Hinnebusch BJ, Rittner CM, Gage KL (2000) Quantitative competitive PCR as a method for exploring flea-Yersinia pestis dynamics. Am. J. Trop. Med. Hyg. 62:552–60

    Google Scholar 

  • Enscore RE, Biggerstaff BJ, Brown TL et al (2002) Modeling relationships between climate and the frequency of human plague cases in the southwestern United States, 1960-1997. Am J Trop Med Hyg 66:186–196

    PubMed  Google Scholar 

  • Eskey CR, Haas VH (1940) Plague in the western part of the United States, US Public Health bulletin 254. US Government Printing Office, Washington, DC

    Google Scholar 

  • Gabastou JM, Proano J, Vimos A et al (2000) An outbreak of plague including cases with probable pneumonic infection, Ecuador, 1998. Trans R Soc Trop Med Hyg 94:387–391

    Article  PubMed  CAS  Google Scholar 

  • Gage KL, Ostfeld RS, Olson JG (1995) Nonviral vector-borne zoonoses associated with mammals in the United States. J. Mammal. 76(3):695–715

    Google Scholar 

  • Gage KL (1998) Plague. In: Topley WWC, Wilson SGS (eds) Microbiology and microbial infections, 9th edn. Hodder Headline Group, London

    Google Scholar 

  • Gage KL, Kosoy MY (2005) Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50:505–528

    Article  PubMed  CAS  Google Scholar 

  • Gage KL, Kosoy MY (2006) Recent trends in plague ecology. In: Roelle JE, Miller BJ, Godbey JL, Biggins DE (eds) Recovery of the black-footed ferret: progress and continuing challenges. U.S. Geological Survey Scientific Investigations Report 2005–5293 U.S. Geological Survey (Publishers)

    Google Scholar 

  • Gage KL, Burkot TR, Eisen RJ et al (2008) Climate and vector-borne diseases. Am J Prev Med 35:436–450

    Article  PubMed  Google Scholar 

  • Hinnebusch BJ (2005) The evolution of flea-borne transmission in Yersinia pestis. Curr Issues Mol Biol 7:197–212

    PubMed  CAS  Google Scholar 

  • Hinnebusch BJ, Erickson DL (2008) Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. In: Romeo T (ed) Bacterial biofilms, vol 322, Current topics in microbiology and immunology. Springer, Berlin, pp 230–243

    Chapter  Google Scholar 

  • Hinnebusch BJ, Perry RD, Schwan TG (1996) Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273:367–370

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch BJ, Fischer ER, Schwan TG (1998) Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea. J Infect Dis 178: 1406–1415

    Article  PubMed  CAS  Google Scholar 

  • Huang XZ, Nikolich M, Lindler LE (2006) Current trends in plague research: from genomics to virulence. Clin Med Res 4:189–199

    Article  PubMed  CAS  Google Scholar 

  • Jarrett CO, Deak E, Isherwood KE et al (2004) Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190:783–792

    Article  PubMed  Google Scholar 

  • Kartman L (1969) Effect of differences in ambient temperature upon the fate of Pasteurella pestis in Xenopsylla cheopis. Trans R Soc Trop Med Hyg 63:71–75

    Article  PubMed  CAS  Google Scholar 

  • Kartman L, Prince FM, Quan SF (1958a) Studies on Pasteurella pestis in flea: VII. The plague-vector efficiency of Hystricopsylla linsdalei compared with Xenopsylla cheopis under experimental conditions. Am J Trop Med Hyg 7:317–322

    PubMed  CAS  Google Scholar 

  • Kartman L, Prince FM, Quan SF (1958b) New knowledge on the ecology of sylvatic plague. Ann N Y Acad Sci 70:668–711

    Article  PubMed  CAS  Google Scholar 

  • Kausrud KL, Viljugrein H, Frigessi A et al (2007) Climatically driven synchrony of gerbil populations allows large-scale plague outbreaks. Proc Biol Sci 274:1963–1969

    Article  PubMed  Google Scholar 

  • Keys D (1999) Catastrophe: An Investigation into the Origins of the Modern World. Random House (UK). 384 pp

    Google Scholar 

  • Kilonzo BS (1999) Plague epidemiology and control in eastern and southern Africa during the period 1978 to 1997. Cent Afr J Med 45:70–76

    PubMed  CAS  Google Scholar 

  • Krasnov BR, Khokhlova IS, Fielden LJ et al (2001) Effect of air temperature and humidity on the survival of pre-imaginal stages of two flea species (Siphonaptera: Pulicidae). J Med Entomol 38:629–637

    Article  PubMed  CAS  Google Scholar 

  • Krasnov BR, Khokhlova IS, Fielden LJ et al (2002) Time of survival under starvation in two flea species (Siphonaptera: Pulicidae) at different air temperatures and relative humidities. J Vector Ecol 27:70–81

    PubMed  CAS  Google Scholar 

  • Krasnov BR, Shenbrot GI, Mouillot D et al (2006) Ecologic characteristics of flea species relate to their suitability as plague vectors. Oecologia 149:474–481

    Article  PubMed  Google Scholar 

  • Lorange EA, Race BL, Sebbane F et al (2005) Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis 191:1907–1912

    Article  PubMed  Google Scholar 

  • Lowell JL, Wagner DM, Atshabar B et al (2005) Identifying sources of human plague exposure. J Clin Microbiol 43:650–656

    Article  PubMed  Google Scholar 

  • McCoy GW (1910) A note on squirrel fleas as plague carriers. Public Health Rep 25:465

    Article  Google Scholar 

  • Meyer KF (1961) Pneumonic plague. Bacteriol Rev 25:249–261

    PubMed  CAS  Google Scholar 

  • Olson WP (1969) Rat-flea indices, rainfall, and plague outbreaks in Vietnam, with emphasis on the Pleiku area. Am J Trop Med Hyg 18:621–628

    PubMed  CAS  Google Scholar 

  • Parmenter RR, Yadav EP, Parmenter CA et al (1999) Incidence of plague associated with increased winter-spring precipitation in New Mexico, USA. Am J Trop Med Hyg 61:814–821

    PubMed  CAS  Google Scholar 

  • Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66

    PubMed  CAS  Google Scholar 

  • Poland J, Barnes A (1979) Plague. In CRC Handbook Series in Zoonoses, Section A: Bacterial, Rickettsial, and Mycotic Diseases, Vol. 1., ed. JH Steele, H Stoenner, W Kaplan, pp. 515–97. Boca Raton, FL: CRC Press

    Google Scholar 

  • Pollitzer MD (1952) Plague studies: 7. Insect vectors. Bull World Health Organ 7:231–342

    PubMed  CAS  Google Scholar 

  • Pollitzer MD (1954) Plague. World Health Organization, Geneva, p 698

    Google Scholar 

  • Pollitzer R, Meyer KF (1961) The ecology of plague. In: May JF (ed) Studies in disease ecology. Hafner, New York

    Google Scholar 

  • Prentice MB, Rahalison L (2007) Plague. Lancet 369:1196–1207

    Article  PubMed  Google Scholar 

  • Quan SF, Burroughs AL, Holdenried R et al (1953) Studies on the prevention of experimental plague epizootics instituted among mice by infected fleas. Estratto dagli ATTI DEL VI CONGRESSO INTERNAZIONALE DI MICROBIOLOGIA ROMA, 6-12, Settembre 1953 – Vol. 5, Sez. XVI,. 537–540

    Google Scholar 

  • Randolph SE, Storey K (1999) Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol 36:741–748

    PubMed  CAS  Google Scholar 

  • Rose LJ, Donlan R, Bannerjee SN et al (2003) Survival of Yersinia pestis on environmental surfaces. Appl Environ Microbiol 69:2166–2171

    Article  PubMed  CAS  Google Scholar 

  • Rust MK, Dryden MW (1997) The biology, ecology, and management of the cat flea. Annu Rev Entomol 42:451–473

    Article  PubMed  CAS  Google Scholar 

  • Salkeld DJ, Salathe M, Stapp P et al (2010) Plague outbreaks in prairie dog populations: percolation thresholds of alternate host abundance explain epizootics. Proc Natl Acad Sci U S A 107:14247–14250

    Article  PubMed  CAS  Google Scholar 

  • Samia NI, Kausrud KL, Heesterbeek H et al (2011) Dynamics of the plague-wildlife-human system in Central Asia are controlled by two epidemiological thresholds. Proc Natl Acad Sci U S A 108:14527–14532

    Article  PubMed  CAS  Google Scholar 

  • Schotthoefer AM, Gage KL (2009) Climate impact on fleas and rodents. Public Health 20:46–51

    Google Scholar 

  • Simond PL (1898) La propagation de las peste. Annals of the Instititue Pasteur 10: 626–687

    Google Scholar 

  • Stapp P, Antolin MF, Ball M (2004) Patterns of extinction in prairie dog metapopulations: plague outbreaks follow El Niño events. Front Ecol Environ 2:235–240

    Article  Google Scholar 

  • Stenseth NC, Samia NI, Viljugrein H et al (2006) Plague dynamics are driven by climate variation. Proc Natl Acad Sci U S A 103:13110–13115

    Article  PubMed  CAS  Google Scholar 

  • Stenseth NC, Atshabar BB, Begon M et al (2008) Plague: past, present, and future. PLoS Med 5:e3

    Article  PubMed  Google Scholar 

  • Tripp D, Gage KL, Montenieri JA et al (2009) Flea abundance on black-tailed prairie dogs (Cynomys ludovicianus) increases during plague epizootics. Vector Borne Zoonotic Dis 9:313–321

    Article  PubMed  Google Scholar 

  • Vetter SM, Eisen RJ, Schotthoefer AM (2010) Biofilm formation is not required for early-phase transmission of Yersinia pestis. Microbiology 156:2216–2225

    Article  PubMed  CAS  Google Scholar 

  • Webb CT, Brooks CP, Gage KL et al (2006) Classic fleaborne transmission does not drive plague epizootics in prairie dogs. Proc Natl Acad Sci U S A 103:6236–6241

    Article  PubMed  CAS  Google Scholar 

  • Wheeler CM, Douglas JR (1945) Sylvatic plague studies: V. The determination of vector efficiency. J Infect Dis 77:1–12

    Article  Google Scholar 

  • Wilder AP, Eisen RJ, Bearden SW et al (2008a) Oropsylla hirsuta (Siphonaptera: Ceratophyllidae) can support plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus) by early phase transmission of Yersinia pestis. Vector Borne Zoonotic Dis 8:1–9

    Article  Google Scholar 

  • Wilder AP, Eisen RJ, Bearden SW (2008b) Transmission efficiency of two flea species (Oropsylla tuberculata cynomuris and Oropsylla hirsuta) involved plague epizootics among prairie dogs. Ecohealth 5:205–212

    Article  PubMed  Google Scholar 

  • Xu L, Liu Q, Stige LC (2011) Nonlinear effect of climate on plague during the third pandemic in China. Proc Natl Acad Sci U S A 108:10214–10219

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Li Z, Tao Y et al (2007) Relationship between increase rate of human plague in China and global climate index as revealed by cross-spectral and cross-wavelet analyses. Integr Zool 2:144–153

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth L. Gage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Gage, K.L. (2012). Factors Affecting the Spread and Maintenance of Plague. In: de Almeida, A., Leal, N. (eds) Advances in Yersinia Research. Advances in Experimental Medicine and Biology, vol 954. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3561-7_11

Download citation

Publish with us

Policies and ethics