Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 151))

Abstract

Drug delivery is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals. Most common routes of administration include the preferred non-invasive peroral (through the mouth), topical (skin), transmucosal (nasal, buccal/sublingual, vaginal, ocular and rectal) and inhalation routes. Current effort in the area of drug delivery include the development of targeted delivery in which the drug is only active in the target area of the body (for example, in cancerous tissues) and sustained release formulations in which the drug is released over a period of time in a controlled manner from a formulation. This is achieved by combining electroporation with the input of drugs at a location. This paper reviews the process of electroporation and then further discusses the electrochemotherapy, one of the most upcoming application of electroporation in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cema\(\hat{\rm z}\)ar M, Miklavĉiĉ D, Serŝa G (1998) Intrinsic sensitivity of tumor cells to bleomycin as an indicator of tumor response to electrochemotherapy. Jpn J Cancer Res 89:328–333

    Google Scholar 

  2. Serŝa G (2000) Electrochemotherapy. In: Jaroszeski MJ, Heller R, Gilbert R (eds) Electrochemotherapy, electrogenetherapy, and transdermal drug delivery: electrically mediated delivery of molecules to cells (methods in molecular medicine). Humana Press, Totowa, pp 119–133

    Google Scholar 

  3. Serŝa G, Novaković S, Miklavĉiĉ D (1993) Potentiation of bleomycin antitumor effectiveness by electrotherapy. Cancer Lett 69:81–84

    Article  Google Scholar 

  4. Miklavĉiĉ D, Kotnik T (2004) Electroporation for electrochemotherapy and gene therapy. In: Markov MS (ed) Bioelectromagnetic medicine. Marcel Dekker, New York, pp 637–656

    Google Scholar 

  5. Mir LM, Orlowski S, Belehradek J, Paoletti C (1991) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer 27:68–72

    Article  Google Scholar 

  6. Mir LM, Orlowski S, Belehradek JJ, Teissié J, Rols M, Serŝa G, Miklavĉiĉ D, Gilbert R, Heller R (1995) Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy. Bioelectrochem Bioenerg 38:203–207

    Article  Google Scholar 

  7. Serŝa G, Cema\(\hat{\rm z}\)ar M, Miklavĉiĉ D (1995) Antitumor effectiveness of electrochemotherapy with cisdiamminedichloroplatinum(II) in mice. Cancer Res 55:3450–3455

    Google Scholar 

  8. Glass LF, Fenske NA, Jaroszeski M, Perrott R, Harvey DT, Reintgen DS, Heller R (1996) Bleomycin-mediated electrochemotherapy of basal cell carcinoma. J Am Acad Dermatol 34:82–86

    Article  Google Scholar 

  9. Gothelf A, Mir LM, Gehl J (2003) Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev 20:1–17

    Google Scholar 

  10. Kranjc S, Cema\(\hat{\rm z}\)ar M, Grosel A, Sentjurc M, Serŝa G (2005) Radiosensitising effect of electrochemotherapy with bleomycin in LPB sarcoma cells and tumors in mice. BMC Cancer 5:15

    Google Scholar 

  11. Tozon N, Kodre V, Serŝa G, Cema\(\hat{\rm z}\)ar M (2005) Effective treatment of perianal tumors in dogs with electrochemotherapy. Anticancer Res 25:839–946

    Google Scholar 

  12. Snoj M, Rudolf Z, Cema\(\hat{\rm z}\)ar M, Jancar B, Serŝa G (2005) Successful sphincter-saving treatment of anorectal malignant melanoma with electrochemotherapy, local excision and adjuvant brachytherapy. Anti-Cancer Drugs 16:345–348

    Google Scholar 

  13. Serŝa G, Stabuĉ B, Cema\(\hat{\rm z}\)ar M, Miklavĉiĉ D, Rudolf Z (2000) Electrochemotherapy with cisplatin: the systemic antitumour effectiveness of cisplatin can be potentiated locally by the application of electric pulses in the treatment of malignant melanoma skin metastases. Melanoma Res 10:381–385

    Google Scholar 

  14. Neumann E (1989) The relaxation hysteresis of membrane electroporation. In: Neumann E, Sowers AE, Jordan CA (eds) Electroporation and electrofusion in cell biology. Plenum Press, New York, pp 61–82

    Google Scholar 

  15. Pohl HA (1978) Dielectrophoresis, the behavior of matter in non-uniform electric fields. Cambridge University Press, Cambridge

    Google Scholar 

  16. Zimmermann U (1982) Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta 694:227–277

    Article  Google Scholar 

  17. Dimitrov DS (1995) Electroporation and electrofusion of membranes. In: Lipowsky R, Sackmann E (eds) Handbook of physics of biological systems, vol 1. Elsevier, Amsterdam, pp 854–895

    Google Scholar 

  18. Chang, DC, Chassy, BM, Saunders, JA, Sowers , AE (eds) (1992) Guide to electroporation and electrofusion. Academic Press, San Diego

    Google Scholar 

  19. Kotnik T, Miklavĉiĉ D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric fields a method for theoretical analysis and its application. Bioelectrochem Bioenerg 45:3–16

    Article  Google Scholar 

  20. Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  Google Scholar 

  21. Rosenheck K, Lindner P, Pecht I (1975) Effect of electric fields on light-scattering and fluorescence of chromaffin granules. J Membr Biol 20:1–12

    Article  Google Scholar 

  22. Zimmermann U, Schulz J, Pilwat G (1973) Transcellular ion flow in Escherichia coli B and electrical sizing of bacterias. Biophys J 13(10):1005–1013

    Article  Google Scholar 

  23. Kinosita K, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438–441

    Article  Google Scholar 

  24. Zimmermann U, Vienken J, Pilwat G (1980) Development of drug carrier systems: electric field induced effects in cell membranes. J Electroanal Chem 116:553–574

    Article  Google Scholar 

  25. Kinosita K, Tsong TY (1977) Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta 471:227–242

    Article  Google Scholar 

  26. Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MR (1979) Electric breakdown of bilayer membranes: I. The main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg 6:37–52

    Article  Google Scholar 

  27. Chernomordik LV, Sukharev SI, Abidor IG, Chizmadzhev YA (1983) Breakdown of lipid bilayer membranes in an electric field. Biochim Biophys Acta 736:203–213

    Article  Google Scholar 

  28. Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–287

    Article  Google Scholar 

  29. Schwister K, Deuticke B (1985) Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. Biochim Biophys Acta 816:332–348

    Article  Google Scholar 

  30. Chang DC, Reese TS (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J 58:1–12

    Article  Google Scholar 

  31. Kinosita K Jr, Hibino M, Itoh H, Shigemori M, Hirano K, Kirinoand Y, Hayakawa T (1992) Events of membrane electroporation visualized on a time scale from microsecond to seconds. In: Chang DC, Chassy BM, Saunders JA, Sowers AE (eds) Guide to electroporation and electrofusion. Academic Press, San Diego, pp 29–46

    Google Scholar 

  32. Hibino M, Itoh H, Kinosita KJ (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J 64:1789–1800

    Article  Google Scholar 

  33. Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471–3482

    Article  Google Scholar 

  34. Weaver JC (1993) Electroporation a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435

    Google Scholar 

  35. Gehl J (2008) Electroporation for drug and gene delivery in the clinic. In: Shulin L (ed) Electroporation protocols. Humana Press, Totowa, pp 351–359

    Google Scholar 

  36. Gregor S (2007) Electrochemotherapy in treatment of solid tumours in cancer patients. In: 11th Mediterranean conference on medical and biomedical engineering and computing 2007 IFMBE proceedings, vol 16, pp 614–617

    Google Scholar 

  37. Jaroszeski MJ, Gilbert R, Heller R (2000) Methods in molecular medicine: electrochemotherapy, electrogenetherapy, and transdermal drug delivery electrically mediated delivery of molecules to cells. Humana Press, Totowa

    Google Scholar 

  38. Serŝa G, Cema\(\hat{\rm z}\)ar M, Semrov D, Miklavĉiĉ D (1996) Changing electrode orientation improves the efficacy of electrochemotherapy of solid tumours in mice. Bioelectrochem Bioenerg 39:61–66

    Google Scholar 

  39. Ramirez L, Orlowski S, An D, Bindoula G, Dzodic R, Ardouin P, Bognel C, Belehradek J, Munck JN, Mir LM (1998) Electrochemotherapy on liver tumours in rabbits. Br J Cancer 77:2104–2111

    Article  Google Scholar 

  40. Orlowski S, An D, Belehradek J, Mir LM (1998) Antimetastatic effect of electrochemotherapy and histoincompatible interleukin-2-secreting cells in murine Lewis lung tomour. Anticancer drugs 9:551–556

    Article  Google Scholar 

  41. Budak-Alpdogan T, Banerjee D, Bertino JR (2005) Hematopoietic stem cell gene therapy with drug resistance genes: an update. Cancer Gene Ther 12:849–863

    Article  Google Scholar 

  42. Scott-Taylor TH, Pettengell R, Clarke I, Stuhler G, Barthe MCL, Walden P, Dalgleish AG (2000) Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines. Biochim Biophys Acta 1500:265–267

    Article  Google Scholar 

  43. Orentas R, Schauer D, Bin Q, Johnson BD (2001) Electrofusion of a weakly immunogenic neuroblastoma with dendritic cells produces a tumor vaccine. Cell Immunol 213:4–13

    Google Scholar 

  44. Schmidt E, Leinfelder U, Gessner P, Zillikens D, Brocker EB, Zimmermann U (2001) CD19+ B lymphocytes are the major source of human antibody-secreting hybridomas generated by electrofusion. J Immunol Methods 255:93–102

    Article  Google Scholar 

  45. Gaynor P, Wells DN, Oback B (2005) Couplet alignment and improved electrofusion by dielectrophoresis for a zona-free high-throughput cloned embryo production system. Med Biol Eng Comput 43:150–154

    Article  Google Scholar 

  46. Prausnitz MR, Bose VG, Langer R, Weaver JC (1993) Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci USA 90:10504–10508

    Article  Google Scholar 

  47. Vanbever R, Lecouturier N, Preat V (1994) Transdermal delivery of metoprolol by electroporation. Pharmacol Res 11:1657–1662

    Article  Google Scholar 

  48. Mouneimne Y, Tosi PF, Barhoumi R, Nicolau C (1992) Electroinsertion: an electrical method for protein implantation into cell membranes. In: Chang DC, Chassy BM, Saunders JA, Sowers AE (eds) Guide to electroporation and electrofusion. Academic Press, San Diego, pp 327–346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana Talele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Talele, S. (2013). Drug Delivery by Electroporation: Review. In: Sobh, T., Elleithy, K. (eds) Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering. Lecture Notes in Electrical Engineering, vol 151. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3558-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3558-7_48

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3557-0

  • Online ISBN: 978-1-4614-3558-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics