Skip to main content

Mechanical Testing

  • Chapter
  • First Online:

Abstract

The classical view of ceramic materials is:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

General References

  • ASM International (1991) Engineered materials handbook, vol 4, Ceramics and glasses. ASM International, Materials Park, A useful reference

    Google Scholar 

  • Balluffi RW (2011) Introduction to elasticity theory for crystal defects. Cambridge University Press, Cambridge, Very new—hope to see it soon!

    Google Scholar 

  • Cook RF, Pharr GM (1994) Mechanical properties of ceramics. In: Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology. VCH, Weinheim, pp 339–407

    Google Scholar 

  • Davidge RW (1979) Mechanical behavior of ceramics. Cambridge University Press, Cambridge, UK, A brief introduction

    Google Scholar 

  • Fischer-Cripps AC (2002) Nanoindentation. Springer, New York

    Google Scholar 

  • Gordon JE (2006) The new science of strong materials, or why you don’t fall through the floor. Princeton University Press, Princeton, revised edn, An excellent introduction to mechanical properties of materials, the original was 1968

    Google Scholar 

  • Green DJ (1998) An introduction to the mechanical properties of ceramics. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Lawn B, Wilshaw TR (1975) Indentation fracture — principles and applications. J Mater Sci 10:1049, The paper that showed how to derive K1c from indenter experiments

    Article  Google Scholar 

  • McColm IJ (1990) Ceramic hardness. Plenum, New York

    Google Scholar 

  • Munz D, Fett T (1999) Ceramics: mechanical properties, failure behavior, materials selection. Springer, Berlin

    Google Scholar 

  • Richerson DW (2006) Modern ceramic engineering, properties, processing and use in design, 3rd edn. Taylor and Francis, Boca Raton, Chapter 18 describes design approaches for ceramics

    Google Scholar 

  • Sines G, Adams M (1978) Compression testing of ceramics. In: Fracture mechanics of ceramics, vol 3. Plenum, New York, pp 403–434

    Google Scholar 

  • Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical properties of ceramics. Wiley, New York (‘revised’ Ed).

    Book  Google Scholar 

Specific References

  • Blum JJ (1975) Slice synthesis of three dimensional work-of-fracture specimens. Eng Fract Mech 7:593, The slice model for determining Y*, the geometric “constant” in KIc measurements. (c.f., Munz et al)

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids 11:127

    Article  Google Scholar 

  • Lawn BR, Marshall DB (1979) Hardness, toughness, and brittleness – indentation analysis. J Am Ceram Soc 62:347–350, Defines the brittleness index (BI)

    Article  CAS  Google Scholar 

  • Munz DM, Shannon JL, Bubsey RT (1980) Fracture-toughness calculation from maximum load in 4 point bend tests of Chevron Notch specimens. Int J Fract 16:R137–142, The straight-through crack assumption approach to determination of Y*. the geometric “constant” in KIc measurements (c.f., Blum et al)

    Article  Google Scholar 

  • Ridgeway RR, Ballard AH, Bailey BL (1933) Hardness values for electrochemical products. Trans Electrochem Soc 63:267

    Google Scholar 

  • Syed SA, Wahl KJ, Colton RJ (2000) Quantitative study of nanoscale contact and pre-contact mechanics using force modulation. Mat Res Soc Symp Proc 594:471–476, Developed the picoindenter—a combination of a nanoindenter and an AFM

    Google Scholar 

  • Thoman DR, Bain LJ, Antle CE (1969) Inferences on the parameters of the Weibull distribution. Technometrics 11:445, Used numerical methods to determine m

    Article  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297, The original

    Google Scholar 

Www

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Barry Carter .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carter, C.B., Norton, M.G. (2013). Mechanical Testing. In: Ceramic Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3523-5_16

Download citation

Publish with us

Policies and ethics