The Matter Spectral Density from Lensed Cosmic Microwave Background Observations

  • Ethan Anderes
  • Alexander van Engelen
Conference paper
Part of the Lecture Notes in Statistics book series (LNS, volume 902)


We use local likelihood estimates of gravitational shear and convergence from lensed cosmic microwave background observations to estimate the projected mass spectral density. Typically there is an additive bias when using a plug-in estimate of the spectral density from a noisy estimate of the random field. We explore the possibility of adjusting this bias by subtracting an approximate power spectrum of the noise in the reconstruction using unlensed simulations. We demonstrate some empirical results that suggest the remaining biases complement those seen in the quadratic estimate developed by Hu and Okamoto (ApJ 557:L79–L83, 2001; ApJ 574:566–574, 2002; Phys Rev D 67:083002, 2003). We finish the paper with a discussion regarding the potential scientific applications and the challenges associated with estimating the noise spectrum from simulations.


Spectral Density Cosmic Microwave Background Gravitational Potential Quadratic Estimate Cosmic Microwave Background Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Lloyd Knox for numerous helpful discussions.


  1. 1.
    Anderes, E., Knox, L. & van Engelen, A., Phys, Rev D 83, 043523 (2011)CrossRefGoogle Scholar
  2. 2.
    Bucher, M., Carvalho, C. S., Moodley, K., Remazeilles, M., arXiv:1004.3285 (2010)Google Scholar
  3. 3.
    Carvalho, C. S., Moodley, K., Phys. Rev. D 81, 123010 (2010)CrossRefGoogle Scholar
  4. 4.
    Dodelson, S., Modern cosmology, Academic Press (2003)Google Scholar
  5. 5.
    Hanson, D., Challinor, A., Efstathiou, G., Bielewicz, P., Phys, Rev D 83, 043005 (2011)CrossRefGoogle Scholar
  6. 6.
    Hirata, C., & Seljak, U., Phys. Rev. D 67, 043001 (2003a)CrossRefGoogle Scholar
  7. 7.
    Hirata, C., & Seljak, U., Phys. Rev. D 68, 083002 (2003b)CrossRefGoogle Scholar
  8. 8.
    Hu, W., ApJ 557: L79-L83 (2001)CrossRefGoogle Scholar
  9. 9.
    Hu, W., & Okamoto, T., ApJ 574: 566–574 (2002)CrossRefGoogle Scholar
  10. 10.
    Kaplinghat, M., Knox, L., Song, Y., Phys. Rev. Lett. 91, 241301 (2003)CrossRefGoogle Scholar
  11. 11.
    Kesden, M., Cooray, A., Kamionkowski, M., Phys. Rev. Lett. 89, 011304 (2002)CrossRefGoogle Scholar
  12. 12.
    Knox, L., Song, Y., Phys. Rev. Lett. 89, 011303 (2002)CrossRefGoogle Scholar
  13. 13.
    Lewis, A. and Challinor, A. and Lasenby, A., ApJ, 538: 473–476 (2000)CrossRefGoogle Scholar
  14. 14.
    Okamoto, T., & Hu, W., Phys. Rev. D 67, 083002 (2003)CrossRefGoogle Scholar
  15. 15.
    Seljak, U, & Hirata, C., Phys. Rev. D 69, 043005 (2004)CrossRefGoogle Scholar
  16. 16.
    Smith, K., Hu W., Manoj, K., Phys. Rev. D 74, 123002 (2006)CrossRefGoogle Scholar
  17. 17.
    Zaldarriaga, M., & Seljak, U., Phys. Rev. D 59, 123507 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.University of CaliforniaDavisUSA
  2. 2.McGill UniversityMontréalCanada

Personalised recommendations