Skip to main content

Extra-solar Planets via Bayesian Fusion MCMC

  • Chapter
  • First Online:
Astrostatistical Challenges for the New Astronomy

Part of the book series: Springer Series in Astrostatistics ((SSIA,volume 1))

Abstract

A Bayesian multi-planet Kepler periodogram has been developed based on a fusion Markov chain Monte Carlo algorithm (FMCMC). FMCMC is a new general purpose tool for nonlinear model fitting. It incorporates parallel tempering, simulated annealing and genetic crossover operations. Each of these features facilitate the detection of a global minimum in chi-squared in a highly multi-modal environment. By combining all three, the algorithm greatly increases the probability of realizing this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For multiple planet models, there is no analytic expression for the exact radial velocity perturbation. In many cases, the radial velocity perturbation can be well modeled as the sum of multiple independent Keplerian orbits which is what has been assumed in this paper.

  2. 2.

    Following on from the pioneering work on Bayesian periodograms by [18, 19]

  3. 3.

    The interval between tempering swap operations is typically much smaller than is suggested by this schematic.

  4. 4.

    Mathematica code that implements the version of fusion MCMC shown in Fig. 7.4 is available on the Cambridge University Press web site for my textbook [10], ‘Bayesian Logical data Analysis for the Physical Sciences’. See the ‘Additional book examples with Mathematica 8 tutorial’ in the resource material. There you will find an example entitled, ‘Markov chain Monte Carlo powered Kepler periodogram’. Non Mathematica users can download a free Wolfram CDF Player to view the resource material.

  5. 5.

    Thinning by a factor of 10 has already occurred meaning only every tenth iteration is recorded.

  6. 6.

    In the absence of detailed knowledge of the sampling distribution for the extra noise, we pick a Gaussian because for any given finite noise variance it is the distribution with the largest uncertainty as measured by the entropy, i.e., the maximum entropy distribution [30] and [10] (section 8.7.4.)

  7. 7.

    Test that the extended credible region (like 9930) for the period parameter does not overlap the credible region of an adjacent period parameter in a multiple planet fit.

  8. 8.

    Table 7.1 gives two different choices of prior for the eccentricity parameter. The marginal likelihoods listed in the Table 7.2 correspond to the eccentricity noise bias prior. Marginal likelihood values assuming a uniform eccentricity prior were systematically lower. For example, for a 3 planet fit using the uniform eccentricity prior the marginal likelihood was a factor of 3 smaller.

References

  1. Campbell, B., Walker, G.A.H., Yang, S.: A Search for Substellar Companions to Solar-type Stars. Astrophys. J. 331, 902–921 (1988)

    Article  Google Scholar 

  2. Wolszczan, A., Frail, D.: A Planetary System Around the Millisecond Pulsar PSR1257 + 12. Nature 355, 145–147 (1992)

    Article  Google Scholar 

  3. Mayor M., Queloz D.: A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995)

    Article  Google Scholar 

  4. Marcy G.W., Butler R.P: A Planetary Companion to 70 Virginis. Astrophys. J. 464, L147– 151 (1996)

    Article  Google Scholar 

  5. Udry, S., Bonfils, X., Delfosse, X., Forveille, T., Mayor, M., Perrier, C., Bouchy, F., Lovis, C., Pepe, F., Queloz, D., Bertaux, J.-L.: The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 M) in a 3-planet system. Astron. Astrophys. 469, L43–L47 (2007)

    Article  Google Scholar 

  6. Lovis, C., Ségransan, D., Mayor, M., Udry, S., Benz, W., Bertaux, J.-L., Bouchy, F., Correia, A.C.M., Laskar, J., Lo Curto, G., Mordasini, C., Pepe, F., Queloz, D., Santos, N.C.: The HARPS search for southern extra-solar planets. XXVIII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems. Astron. Astrophys. 528, 112L (2011)

    Article  Google Scholar 

  7. Loredo, T.L., Chernoff, D.: Bayesian Adaptive Exploration. In: Feigelson, E.D., Babu, G.J. (eds.) Statistical Challenges in Modern Astronomy III, pp. 57–69. Springer-Verlag, New York (2003)

    Chapter  Google Scholar 

  8. Loredo, T.: Bayesian Adaptive Exploration. In: Erickson, G.J., Zhai, Y. (eds.) Bayesian Inference And Maximum Entropy Methods in Science and Engineering: 23rd International Workshop, pp. 330–346. AIP Conf. Proc., Vol. 707 (2004)

    Google Scholar 

  9. Cumming, A.: Detectability of extrasolar planets in radial velocity surveys. Mon. Not. R. Astron. Soc., 354, 1165–1176 (2004)

    Article  Google Scholar 

  10. Gregory, P.C.: Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica Support, Cambridge University Press (2005)

    Book  MATH  Google Scholar 

  11. Gregory, P.C.: A Bayesian Analysis of Extra-solar Planet Data for HD 73526. Astrophys. J. 631, 1198–1214 (2005)

    Article  Google Scholar 

  12. Ford, E.B.: Quantifying the Uncertainty in the Orbits of Extrasolar Planets. Astron. J. 129, 1706–1717 (2005)

    Article  Google Scholar 

  13. Ford, E.B.: Improving the Efficiency of Markov Chain Monte Carlo for Analzing the Orbits of Extrasolar Planets. Astrophys. J. 642, 505–522 (2006)

    Article  Google Scholar 

  14. Ford, E.B., Gregory, P.C.: Bayesian Model Selection and Extrasolar Planet Detection. In: Babu, G.J., Feigelson, E.D. (eds.) Statistical Challenges in Modern Astronomy IV, pp. 189– 204. ASP Conf. Ser., Vol. 371 (2007)

    Google Scholar 

  15. Cumming, A., Dragomir, D.: An Integrated Analysis of Radial Velocities in Planet Searches. Mon. Not. R. Astron. Soc., 401, 1029–1042 (2010)

    Article  Google Scholar 

  16. Dawson, R.I., Fabrycky, D.C.: Radial Velocity Planets De-aliased: A New, Short Period for Super-Earth 55 Cnc e. Astrophys. J. 722, 937–953 (2010)

    Article  Google Scholar 

  17. Gregory, P.C.: Bayesian Re-analysis of the Gliese 581 Exoplanet System. Mon. Not. R. Astron. Soc. 415, 2523–2545 (2011)

    Article  Google Scholar 

  18. Jaynes, E.T.: Bayesian Spectrum and Chirp Analysis. In: Smith, C.R., Erickson, G.L. (eds.) Maximum Entropy and Bayesian Spectral Analysis and Estimation Problems, pp. 1–37. D. Reidel, Dordrecht (1987)

    Chapter  Google Scholar 

  19. Bretthorst, G.L.: Bayesian Spectrum Analysis and Parameter Estimation, Springer-Verlag, New York (1988)

    MATH  Google Scholar 

  20. Geyer, C.J.: Markov Chain Monte Carlo. In: Keramidas, E.M. (ed.) Computing Science and Statistics, pp. 156–163. Proceedings of the 23rd Symposium on the Interface, Interface Foundation, Fairfax Station (1991)

    Google Scholar 

  21. Hukushima, K., Nemoto, K.: Exchange Monte Carlo Method and Application to Spin Glass Simulations. Journal of the Physical Society of Japan 65(4), 1604–1608 (1996)

    Article  Google Scholar 

  22. Atchadé, Y.F., Roberts, G.O., Rosenthal, J.S.: Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo. Stat. Comput. 21(4), 555–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gregory, P.C.: A Bayesian Re-analysis of HD 11964: Evidence for Three Planets. In: Knuth, K.H., Caticha, A., Center, J.L., Giffin, A., Rodrguez, C.C. (eds.) Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 27th International Workshop, pp. 307– 314. AIP Conference Proceedings, Vol. 954 (2007)

    Google Scholar 

  24. Gregory, P.C., Fischer, D.A.: A Bayesian Periodogram Finds Evidence for Three Planets in 47 Ursae Majoris. Mon. Not. R. Astron. Soc. 403, 731–747 (2010)

    Article  Google Scholar 

  25. Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7, 110–120 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ter Braak, C.J.F.: A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 16, 239–249 (2006)

    Article  MathSciNet  Google Scholar 

  27. Gregory, P.C.: Bayesian Exoplanet Tests of a New Method for MCMC Sampling in Highly Correlated Parameter Spaces. Mon. Not. R. Astron. Soc. 410, 94–110 (2011)

    Article  Google Scholar 

  28. Fischer, D.A., Laughlin, G.L., Butler, R.P., Marcy, G.W., Johnson, J., Henry, G.,Valenti, J., Vogt, S.S., Ammons, M., Robinson, S., Spear, G., Strader, J., Driscoll, P., Fuller, A., Johnson, T., Manrao, E., McCarthy, C., Munõz, M., Tah, K.L., Wright, J., Ida, S., Sato, B., Toyota, E., Minniyi, D.: The N2K Consortium. I. A Hot Saturn Planet Orbiting HD 88133. Astrophys. J. 620, 481–486 (2005)

    Article  Google Scholar 

  29. Gregory, P.C.: A Bayesian Kepler Periodogram Detects a Second Planet in HD 208487. Mon. Not. R. Astron. Soc. 374, 1321–1333 (2007)

    Article  Google Scholar 

  30. Jaynes, E.T.: How Does the Brain Do Plausible Reasoning?, Stanford University Microwave Laboratory Report 421, 1957, Reprinted in Erickson, G.J., Smith, C.R. (eds.) Maximum Entropy and Bayesian Methods in Science and Engineering, pp. 1–29. Kluwer Academic Press, Dordrecht (1988)

    Chapter  Google Scholar 

  31. Tinney, C.G., Butler, R.P., Marcy, G.W., Jones, H.R.A., Penny, A.J., McCarthy, C., Carter, B.D., Fischer, D.A.: Three Low-Mass Planets from the Anglo-Australian Planet Search, Astrophys. J. 623, 1171–1179 (2005)

    Article  Google Scholar 

  32. Wittenmyer, R.A., Endl, M., Cochran, W.D., Levison, H.F., Henry, G.W.: A Search for MultiPlanet Systems Using the Hobby-Eberly Telescope. Astrophys. J. Suppl. 182, 97–119 (2009)

    Article  Google Scholar 

  33. Mayor, M., Bonfils, X., Forveille, T., Delfosse, X, Udry, S., Bertaux, J.-L., Beust, H., Bouchy, F., Lovis, C., Pepe, F., Perrier, C., Queloz, D., Santos, N.C.: The HARPS search for southern extra-solar planets. XVIII. An earth-mass planet in the GJ 581 planetary system. Astron. Astrophys. 507, 487–494 (2009)

    Article  Google Scholar 

  34. Vogt, S.S, Butler, R.P., Rivera, E.J., Haghighipour, N., Henry, G.W., Williamson, M.H.: The Lick-Carnegie Exoplanet Survey: A 3.1 Earth Mass Planet in the Habitable Zone of the Nearby M3V Star Gliese 581. Astrophys. J. 723, 954–965 (2010)

    Article  Google Scholar 

  35. Clyde, M.A., Berger, J.O., Bullard, F., Ford, E.B., Jeffreys, W.H., Luo, R., Paulo, R., Loredo, T.: Current Challenges in Bayesian Model Choice. In: Babu, G.J., Feigelson, E.D. (eds.) Statistical Challenges in Modern Astronomy IV, pp. 224–240. ASP Conf. Ser., Vol. 371 (2007)

    Google Scholar 

  36. Feroz, F., Balan, S.T., Hobson, M.P.: Detecting extrasolar planets from stellar radial velocities using Bayesian evidence. Mon. Not. R. Astron. Soc. 415, 3462–3472 (2011)

    Article  Google Scholar 

  37. Loredo, T.L., Berger, J.O., Chernoff, D.F., Clyde, M.A., Liu, B.: Bayesian Methods for Analysis and Adaptive Scheduling of Exoplanet Observations. Stat. Meth. 9, 101–114 (2011)

    Article  MathSciNet  Google Scholar 

  38. Farr, W.M., Sravan, N., Cantrell, A., Kreidberg, L., Bailyn, C.D., Mandel, I., Kalogera, V.: The Mass Distribution of Stellar-Mass Black Holes. Astrophys. J. 741, 103–122 (2011)

    Article  Google Scholar 

  39. Gregory, P.C.: A Bayesian Periodogram Finds Evidence for Three Planets in HD 11964. Mon. Not. R. Astron. Soc. 381, 1607–1619 (2007)

    Article  Google Scholar 

  40. Gregory, P.C.: Discussion on paper by Martin Weinberg regarding Bayesian Model Selection and Parameter Estimation. In: Feigelson, E.D., Babu, G.J. (eds.) Statistical Challenges in Modern Astronomy V, Springer-Verlag (2012, in press)

    Google Scholar 

  41. Jefferys, W.H.: Discusion on “Current Challenges in Bayesian Model Choice” by Clyde et al. In: Babu, G.J., Feigelson, E.D. (eds.) Statistical Challenges in Modern Astronomy IV, pp. 241–244. ASP Conf. Ser., Vol. 371, (2007)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Wolfram Research for providing a complementary license to run gridMathematica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. Gregory .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gregory, P.C. (2013). Extra-solar Planets via Bayesian Fusion MCMC. In: Hilbe, J. (eds) Astrostatistical Challenges for the New Astronomy. Springer Series in Astrostatistics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3508-2_7

Download citation

Publish with us

Policies and ethics