Skip to main content

Bayesian Astrostatistics: A Backward Look to the Future

  • Chapter
  • First Online:
Astrostatistical Challenges for the New Astronomy

Part of the book series: Springer Series in Astrostatistics ((SSIA,volume 1))

Abstract

This “perspective” chapter briefly surveys (1) past growth in the use of Bayesian methods in astrophysics; (2) current misconceptions about both frequentist and Bayesian statistical inference that hinder wider adoption of Bayesian methods by astronomers; and (3) multilevel (hierarchical) Bayesian modeling as a major future direction for research in Bayesian astrostatistics.

This volume contains presentations from the first invited session on astrostatistics to be held at an International Statistical Institute (ISI) World Statistics Congress. This session was a major milestone for astrostatistics as an emerging cross-disciplinary research area. It was the first such session organized by the ISI Astrostatistics Committee, whose formation in 2010 marked formal international recognition of the importance and potential of astrostatistics by one of its information science parent disciplines. It was also a significant milestone for Bayesian astrostatistics, as this research area was chosen as a (non-exclusive) focus for the session.

As an early (and elder!) proponent of Bayesian methods in astronomy, I have been asked to provide a “perspective piece” on the history and status of Bayesian astrostatistics. I begin by briefly documenting the rapid rise in use of the Bayesian approach by astrostatistics researchers over the past two decades. Next, I describe three misconceptions about both frequentist and Bayesian methods that hinder wider adoption of the Bayesian approach across the broader community of astronomer data analysts. Then I highlight the emerging role of multilevel (hierarchical) Bayesian modeling in astrostatistics as a major future direction for research in Bayesian astrostatistics. I end with a provocative recommendation for survey data reporting, motivated by the multilevel Bayesian perspective on modeling cosmic populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notably, Sturrock [3] earlier introduced astronomers to the use of Bayesian probabilities for “bookkeeping” of subjective beliefs about astrophysical hypotheses, but he did not discuss statistical modeling of measurements per se.

  2. 2.

    A third paper [11] had some Bayesian content but focused on frequentist evaluation criteria, even for the one Bayesian procedure considered; these three presentations, with discussion, comprised the Bayesian session.

  3. 3.

    Roberto Trotta and Martin Hendry have shown similar plots in various venues, helpfully noting that the recent rate of growth apparent in Fig. 2.1 is much greater than the rate of growth in the number of all publications; i.e., not just the amount but also the prevalence of Bayesian work is rapidly rising.

  4. 4.

    I am not providing references to publications exhibiting the problem for diplomatic reasons and for a more pragmatic and frustrating reason: In the field where I have repeatedly encountered the problem—analysis of infrared exoplanet transit data—authors routinely fail to describe their analysis methods with sufficient detail to know what was done, let alone to enable readers to verify or duplicate the analysis. While there are clear signs of statistical impropriety in many of the papers, I only know the details from personal communications with exoplanet transit scientists.

  5. 5.

    Efron [16] describes some such cases by saying the frequentist result can be accurate but not correct. Put another way, the performance claim is valid, but the long-run performance can be irrelevant to the case-at-hand, e.g., due to the existence of so-called recognizable subsets in the sample space (see [9] and [16] for elaboration of this notion). This is a further example of how nontrivial the relationship between variability and uncertainty can be.

  6. 6.

    There are theorems linking single-case Bayesian probabilities and long-run performance in some general settings, e.g., establishing that, for fixed-dimension parametric inference, Bayesian credible regions with probability P have frequentist coverage close to P (the rate of convergence is \(o(1/\sqrt N )\) for flat priors, and faster for so-called reference priors). But the theorems do not apply in some interesting classes of problems, e.g., nonparametric problems.

  7. 7.

    The convention is to reserve the term for models with three or more levels of nodes, i.e., two or more levels of edges, or two or more levels of nodes for uncertain variables (i.e., unshaded nodes). The model depicted in panel (d) would be called a two-level model.

  8. 8.

    http://www.mrc-bsu.cam.ac.uk/bugs/

  9. 9.

    It is worth pointing out that this is not a uniquely Bayesian insight. Eddington, Malmquist, and Lutz and Kelker used frequentist arguments to justify their corrections; Eddington even offered adaptive corrections. The large and influential statistics literature on shrinkage estimators leads to similar conclusions; see [22] for further discussion and references.

  10. 10.

    I am tempted to recommend that, even in this regime, the likelihood summary be chosen so as to deter misuse as an estimate, say by tabulating the + 1σ and −2σ points rather than means and standard deviations. I am only partly facetious about this!

References

  1. Gull, S.F., Daniell, G.J.: Image reconstruction from incomplete and noisy data. Nature 272, 686–690 (1978). DOI 10.1038/272686a0

    Article  Google Scholar 

  2. Gull, S.F., Daniell, G.J.: The Maximum Entropy Method (invited Paper). In: van Schooneveld, C. (ed.) IAU Colloq. 49: Image Formation from Coherence Functions in Astronomy, Astrophysics and Space Science Library, D. Reidel Publishing Company, Dordrecht vol. 76, p. 219 (1979)

    Chapter  Google Scholar 

  3. Sturrock, P.A.: Evaluation of Astrophysical Hypotheses. Astrophysical Journal 182, 569–580 (1973). DOI 10.1086/152165

    Article  Google Scholar 

  4. Jeffreys, H.: Theory of probability. Third edition. Clarendon Press, Oxford (1961)

    Google Scholar 

  5. Jaynes, E.T.: Probability theory in science and engineering. Colloquium lectures in pure and applied science. Socony Mobil Oil Co. Field Research Laboratory (1959). http://books.google.com/books?id=Ft4-AAAAIAAJ

    Google Scholar 

  6. Ripley, B.D.: Bayesian methods of deconvolution and shape classification. In: Feigelson, E. D., Babu, G. J. (eds.) Statistical Challenges in Modern Astronomy, Springer, New York pp. 329–346 (1992)

    Chapter  Google Scholar 

  7. Readhead, A.C.S., Lawrence, C.R.: Observations of the isotropy of the cosmic microwave background radiation. Annual Review of Astronomy and Astrophysics 30, 653–703 (1992). DOI 10.1146/annurev.aa.30.090192.003253

    Article  Google Scholar 

  8. Feigelson, E.D., Babu, G.J. (eds.): Statistical Challenges in Modern Astronomy. Springer (1992)

    Google Scholar 

  9. Loredo, T.J.: Promise of Bayesian inference for astrophysics. In: Feigelson, E. D., Babu, G. J. (eds.) Statistical Challenges in Modern Astronomy, pp. 275–306 (1992)

    Google Scholar 

  10. Loredo, T.J.: The promise of bayesian inference for astrophysics (unabridged). Tech. rep., Department of Astronomy, Cornell University (1992). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.1842CiteSeer DOI 10.1.1.56.1842

  11. Nousek, J.A.: Source existence and parameter fitting when few counts are available. In: Feigelson, E. D., Babu, G. J. (eds.) Statistical Challenges in Modern Astronomy, pp. 307–327 (1992)

    Google Scholar 

  12. Lampton, M., Margon, B., Bowyer, S.: Parameter estimation in X-ray astronomy. Astrophysical Journal 208, 177–190 (1976). DOI 10.1086/154592

    Article  Google Scholar 

  13. Loredo, T.J.: Computational Technology for Bayesian Inference. In: Mehringer, D. M., Plante, R. L., Roberts, D. A. (eds.) Astronomical Data Analysis Software and Systems VIII, Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific, San Francisco vol. 172, p. 297 (1999)

    Google Scholar 

  14. Sims, C: Understanding non-bayesians. Unpublished chapter, Department of Economics, Princeton University (2010). URL http://www.princeton.edu/~sims/#UndstndngNnBsns

  15. Kuhn, T.S.: The structure of scientific revolutions. Second edition. University of Chicago Press, Chicago (1970)

    Google Scholar 

  16. Efron, B.: Bayesians, frequentists, and physicists. In: L. Lyons (ed.) PHYSTAT2003: Statistical Problems in Particle Physics, Astrophysics, and Cosmology, SLAC, Stanford CA, pp. 17–24 (2003)

    Google Scholar 

  17. Bayarri, M.J., Berger, J.O.: The interplay of Bayesian and frequentist analysis. Statist. Sci. 19(1), 58–80 (2004). DOI 10.1214/088342304000000116. URL http://dx.doi.org/10.1214/088342304000000116

    Google Scholar 

  18. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian data analysis, second edn. Texts in Statistical Science Series. Chapman and Hall/CRC, Boca Raton, FL (2004)

    Google Scholar 

  19. Little, R.J.: Calibrated Bayes: a Bayes/frequentist roadmap. Amer. Statist. 60(3), 213–223 (2006). DOI 10.1198/000313006X117837. URL http://dx.doi.org/10.1198/ 000313006X117837

    Article  MathSciNet  Google Scholar 

  20. Loredo, T.J.: Statistical foundations and statistical practice (contribution to a panel discussion on the future of astrostatistics). In: Feigelson, E. D., Babu, G. J. (eds.) Statistical Challenges in Modern Astronomy, p. 7pp. Springer (2012) (in press)

    Google Scholar 

  21. West, M.: Commentary. In: Feigelson, E. D., Babu, G. J. (eds.) Statistical Challenges in Modern Astronomy, p. 328ff (1992)

    Google Scholar 

  22. Loredo, T.J.: Analyzing Data from Astronomical Surveys: Issues and Directions. In: Babu, G. J., Feigelson, E. D. (eds.) Statistical Challenges in Modern Astronomy IV, Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific, San Francisco vol. 371, p. 121 (2007)

    Google Scholar 

  23. Loredo, T.J., Hendry, M.A.: Bayesian multilevel modelling of cosmological populations. In: Hobson, M. P., Jaffe, A. H., Liddle, A. R., Mukeherjee, P., Parkinson, D. (eds.) Bayesian Methods in Cosmology, p. 245. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  24. Loredo, T.J., Lamb, D.Q.: Bayesian analysis of neutrinos observed from supernova SN 1987A. Physical Review D 65(6), 063002 (2002). DOI 10.1103/PhysRevD.65.063002

    Article  Google Scholar 

  25. Loredo, T.J., Wasserman, I.M.: Inferring the Spatial and Energy Distribution of Gamma-Ray Burst Sources. II. Isotropic Models. Astrophysical Journal 502, 75 (1998). DOI 10.1086/ 305870

    Article  Google Scholar 

  26. Petit, J.M., Kavelaars, J.J., Gladman, B., Loredo, T.: Size Distribution of Multikilometer Transneptunian Objects. In: Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., Morbidelli, A., Dotson, R. (eds.) The Solar System Beyond Neptune, pp. 71–87. University of Arizona Press Tucson (2008)

    Google Scholar 

  27. Kelly, B.C.: Some Aspects of Measurement Error in Linear Regression of Astronomical Data. Astrophysical Journal 665, 1489–1506 (2007). DOI 10.1086/519947

    Article  Google Scholar 

  28. Feigelson, E.D., Babu, G.J. (eds.): Statistical Challenges in Modern Astronomy V. Springer (2012)

    Google Scholar 

  29. Luo, S., Loredo, T., Wasserman, I.: Likelihood analysis of GRB repetition. In: Kouveliotou, C., Briggs, M. F., Fishman, G. J. (eds.) American Institute of Physics Conference Series, American Institute of Physics Conference Series, AIP, Woodbury vol. 384, pp. 477–481 (1996). DOI 10.1063/1.51706

    Google Scholar 

  30. Graziani, C., Lamb, D.Q.: Likelihood methods and classical burster repetition. In: Rothschild, R. E., Lingenfelter, R. E. (eds.) High Velocity Neutron Stars, American Institute of Physics Conference Series, AIP Woodbury vol. 366, pp. 196–200 (1996). DOI 10.1063/1.50246

    Google Scholar 

  31. Budavári, T., Szalay, A.S.: Probabilistic Cross-Identification of Astronomical Sources. Astro-physical Journal 679, 301–309 (2008). DOI 10.1086/587156

    Article  Google Scholar 

  32. Loredo, T.J.: Commentary on Bayesian coincidence assessment (cross-matching). In: Feigelson, E. D., Babu, G. J. (eds.) Statistical Challenges in Modern Astronomy, p. 6pp. Springer (2012) (in press)

    Google Scholar 

  33. Bovy, J., Hogg, D.W., Roweis, S.T.: Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations. Ann. Appl. Stat. 5(2B), 1657–1677 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. van Dyk, D.A., Connors, A., Kashyap, V.L., Siemiginowska, A.: Analysis of Energy Spectra with Low Photon Counts via Bayesian Posterior Simulation. Astrophysical Journal 548, 224– 243 (2001). DOI 10.1086/318656

    Article  Google Scholar 

  35. Esch, D.N., Connors, A., Karovska, M., van Dyk, D.A.: An Image Restoration Technique with Error Estimates. Astrophysical Journal 610, 1213–1227 (2004). DOI 10.1086/421761

    Article  Google Scholar 

  36. van Dyk, D.A., DeGennaro, S., Stein, N., Jefferys, W.H., von Hippel, T.: Statistical analysis of stellar evolution. Ann. Appl. Stat. 3(1), 117–143 (2009). DOI 10.1214/08-AOAS219. URL http://dx.doi.org/10.1214/08-AOAS219

    Article  MathSciNet  MATH  Google Scholar 

  37. Dobigeon, N., Tourneret, J.Y., Scargle, J.D.: Joint segmentation of multivariate astronomical time series: Bayesian sampling with a hierarchical model. IEEE Trans. Signal Process. 55(2), 414–423 (2007). DOI 10.1109/TSP.2006.885768.

    Article  MathSciNet  Google Scholar 

  38. Loredo, T.J.: The return of the prodigal: Bayesian inference For astrophysics. In: Bernardo, J. M. Berger, J. O., Dawid, A. P., Smith, A. F. M. (eds.) Bayesian Statistics 5 Preliminary Proceedings, volume distributed to participants of the 5th Valencia Meeting on Bayesian Statistics (1995).http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.3616. CiteSeer DOI 10.1.1.55.3616

    Google Scholar 

  39. Wandelt, B.D., Larson, D.L., Lakshminarayanan, A.: Global, exact cosmic microwave background data analysis using Gibbs sampling. Physical Review D 70(8), 083511 (2004). DOI 10.1103/PhysRevD.70.083511

    Article  Google Scholar 

  40. Kitaura, F.S., Enßlin, T.A.: Bayesian reconstruction of the cosmological large-scale structure: methodology, inverse algorithms and numerical optimization. Mon. Not. Roy. Astron. Soc. 389, 497–544 (2008). DOI 10.1111/j.1365-2966.2008.13341.x

    Article  Google Scholar 

  41. Loredo, T.J.: Commentary on Bayesian analysis across astronomy. In: Feigelson, E. D., Babu, G. J. (eds.) Statistical Challenges in Modern Astronomy, p. 12pp. Springer (2012) (in press)

    Google Scholar 

  42. Mandel, K.S., Narayan, G., Kirshner, R.P.: Type Ia Supernova Light Curve Inference: Hierarchical Models in the Optical and Near-infrared. Astrophysical Journal 731, 120 (2011). DOI 10.1088/0004-637X/731/2/120

    Article  Google Scholar 

  43. Jasche, J., Wandelt, B.D.: Bayesian inference from photometric redshift surveys. ArXiv/1106.2757 (2011)

    Google Scholar 

  44. Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M.: Measurement error in nonlinear models, Monographs on Statistics and Applied Probability, vol. 105, second edn. Chapman and Hall/CRC, Boca Raton, FL (2006). DOI 10.1201/9781420010138. URL http://dx.doi. org/10.1201/9781420010138. A modern perspective

    Book  Google Scholar 

  45. Kunz, M., Bassett, B.A., Hlozek, R.A.: Bayesian estimation applied to multiple species. Physical Review D 75(10), 103508 (2007). DOI 10.1103/PhysRevD.75.103508

    Article  Google Scholar 

  46. Goel, P.K., DeGroot, M.H.: Information about hyperparameters in hierarchical models. J. Amer. Statist. Assoc. 76(373), 140–147 (1981).

    MathSciNet  MATH  Google Scholar 

  47. Hadjicostas, P., Berry, S.M.: Improper and proper posteriors with improper priors in a Poisson-gamma hierarchical model. Test 8(1), 147–166 (1999). DOI 10.1007/BF02595867.

    Article  MathSciNet  MATH  Google Scholar 

  48. Sinharay, S., Stern, H.S.: Posterior predictive model checking in hierarchical models. J. Statist. Plann. Inference 111(1–2), 209–221 (2003). DOI 10.1016/S0378-3758(02)00303-8.

    Article  MathSciNet  MATH  Google Scholar 

  49. Gelman, A.: Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1(3), 515–533 (electronic) (2006)

    MathSciNet  Google Scholar 

  50. Bayarri, M.J., Castellanos, M.E.: Bayesian checking of the second levels of hierarchical models. Statist. Sci. 22(3), 322–343 (2007). DOI 10.1214/07-STS235.

    Article  MathSciNet  MATH  Google Scholar 

  51. Patanchon, G., et al.: Submillimeter Number Counts from Statistical Analysis of BLAST Maps. Astrophysical Journal 707, 1750–1765 (2009). DOI 10.1088/0004-637X/707/2/1750

    Article  Google Scholar 

  52. Hogg, D.W., Lang, D.: Telescopes don’t make catalogues! In: EAS Publications Series, EAS Publications Series, EDP Sciences, Les Ulis vol. 45, pp. 351–358 (2011).DOI 10.1051/ eas/1045059

    Google Scholar 

  53. Jaynes, E.T.: A Backward Look to the Future. In: Grandy, W. T., Jr., Milonni, P. W. (eds.) Physics and Probability, Cambridge University Press, Cambridge pp. 261–276 (1993)

    Chapter  Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge NSF and NASA for support of current research underlying this commentary, via grants AST-0908439, NNX09AK60G and NNX09AD03G. I thank Martin Weinberg for helpful discussions on information propagation within multilevel models. Students of Ed Jaynes’s writings on probability theory in physics may recognize the last part of my title, borrowed from a commentary by Jaynes on the history of Bayesian and maximum entropy ideas in the physical sciences [53]. This bit of plagiarism is intended as a homage to Jaynes’s influence on this area — and on my own research and thinking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Loredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Loredo, T.J. (2013). Bayesian Astrostatistics: A Backward Look to the Future. In: Hilbe, J. (eds) Astrostatistical Challenges for the New Astronomy. Springer Series in Astrostatistics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3508-2_2

Download citation

Publish with us

Policies and ethics