Skip to main content

Möbius Transformation and Einstein Velocity Addition in the Hyperbolic Geometry of Bolyai and Lobachevsky

  • Chapter

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 68))

Abstract

In this chapter, dedicated to the 60th Anniversary of Themistocles M. Rassias, Möbius transformation and Einstein velocity addition meet in the hyperbolic geometry of Bolyai and Lobachevsky. It turns out that Möbius addition that is extracted from Möbius transformation of the complex disc and Einstein addition from his special theory of relativity enable the introduction of Cartesian coordinates and vector algebra as novel tools in the study of hyperbolic geometry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahlfors, L.V.: Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  2. Ahlfors, L.V.: Möbius Transformations in Several Dimensions. University of Minnesota School of Mathematics, Minneapolis (1981)

    MATH  Google Scholar 

  3. Ahlfors, L.V.: Old and new in Möbius groups. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 9, 93–105 (1984)

    MathSciNet  MATH  Google Scholar 

  4. Barrett, J.F.: Hyperbolic geometry in special relativity. In: Duffy, M.C., Wegener, M.T. (eds.) Recent Advances in Relativity Theory. Proceedings, pp. 27–34. Hadronic Press, Palm Harbor (2000)

    Google Scholar 

  5. Belloni, L., Reina, C.: Sommerfeld’s way to the Thomas precession. Eur. J. Phys. 7, 55–61 (1986)

    Article  Google Scholar 

  6. Borel, E.: Introduction Géométrique a Quelques Théories Physiques. Gauthier-Villars, Paris (1914)

    Google Scholar 

  7. Cazacu, C.A., Lehto, O.E., Rassias, Th.M.: Analysis and Topology. World Science, Singapore (1998)

    MATH  Google Scholar 

  8. Chen, J.-L., Ungar, A.A.: The Bloch gyrovector. Found. Phys. 32(4), 531–565 (2002)

    Article  MathSciNet  Google Scholar 

  9. Chrysos, M.: The non-intuitive \(\frac{1}{2}\) Thomas factor: a heuristic argument with classical electromagnetism. Eur. J. Phys. 27(1), 1–4 (2006)

    Article  Google Scholar 

  10. Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover, New York (1973)

    Google Scholar 

  11. Coxeter, H.S.M., Greitzer, S.L.: Geometry Revisited. Math. Assoc. Amer., New York (1967)

    MATH  Google Scholar 

  12. Craioveanu, M., Puta, M., Rassias, T.M.: Old and New Aspects in Spectral Geometry. Mathematics and Its Applications, vol. 534. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  13. Crowe, M.J.: A History of Vector Analysis. Dover, New York (1994). The evolution of the idea of a vectorial system, Corrected reprint of the 1985 edition

    Google Scholar 

  14. Eddington, A.S.: The Mathematical Theory of Relativity. Cambridge (1924)

    Google Scholar 

  15. Einstein, A.: Zur Elektrodynamik Bewegter Körper [on the electrodynamics of moving bodies] (We use the English translation in [16] or in [36]). or in http://www.fourmilab.ch/etexts/einstein/specrel/www/). Ann. Phys. (Leipzig), 17, 891–921 (1905)

    Google Scholar 

  16. Albert Einstein: Einstein’s Miraculous Years: Five Papers that Changed the Face of Physics. Princeton, Princeton, NJ, 1998. Edited and introduced by John Stachel. Includes bibliographical references. Einstein’s dissertation on the determination of molecular dimensions – Einstein on Brownian motion – Einstein on the theory of relativity – Einstein’s early work on the quantum hypothesis. A new English translation of Einstein’s 1905 paper on pp. 123–160

    Google Scholar 

  17. Feder, T.: Strong near subgroups and left gyrogroups. J. Algebra 259(1), 177–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fock, V.: The Theory of Space, Time and Gravitation. Macmillan, New York (1964). Second revised edition. Translated from the Russian by N. Kemmer. A Pergamon Press Book

    Google Scholar 

  19. Foguel, T., Ungar, A.A.: Involutory decomposition of groups into twisted subgroups and subgroups. J. Group Theory 3(1), 27–46 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Foguel, T., Ungar, A.A.: Gyrogroups and the decomposition of groups into twisted subgroups and subgroups. Pac. J. Math. 197(1), 1–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Monographs and Textbooks in Pure and Applied Mathematics, vol. 83. Dekker, New York (1984)

    MATH  Google Scholar 

  22. Gray, J.: Möbius’s geometrical mechanics. In: Fauvel, J., Flood, R., Wilson, R. (eds.) Möbius and His Band, Mathematics and Astronomy in Nineteenth-Century Germany, pp. 78–103. Clarendon/Oxford University Press, New York (1993)

    Google Scholar 

  23. Haruki, H., Rassias, T.M.: A new invariant characteristic property of Möbius transformations from the standpoint of conformal mapping. J. Math. Anal. Appl. 181(2), 320–327 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Haruki, H., Rassias, T.M.: A new characteristic of Möbius transformations by use of Apollonius points of triangles. J. Math. Anal. Appl. 197(1), 14–22 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Haruki, H., Rassias, T.M.: A new characteristic of Möbius transformations by use of Apollonius quadrilaterals. Proc. Am. Math. Soc. 126(10), 2857–2861 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Haruki, H., Rassias, T.M.: A new characterization of Möbius transformations by use of Apollonius hexagons. Proc. Am. Math. Soc. 128(7), 2105–2109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Issa, A.N.: Gyrogroups and homogeneous loops. Rep. Math. Phys. 44(3), 345–358 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Issa, A.N.: Left distributive quasigroups and gyrogroups. J. Math. Sci. Univ. Tokyo 8(1), 1–16 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Rickard, M.J.: Gyroscope precession in special and general relativity from basic principles. Am. J. Phys. 75(5), 463–471 (2007)

    Article  Google Scholar 

  30. Kasparian, A.K., Ungar, A.A.: Lie gyrovector spaces. J. Geom. Symmetry Phys. 1(1), 3–53 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Kikkawa, M.: Geometry of homogeneous Lie loops. Hiroshima Math. J. 5(2), 141–179 (1975)

    MathSciNet  MATH  Google Scholar 

  32. Kikkawa, M.: Geometry of homogeneous left Lie loops and tangent Lie triple algebras. Mem. Fac. Sci. Eng., Shimane Univ., Ser. B, Math. Sci. 32, 57–68 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Kowalsky, H.-J.: Lineare Algebra. Gruyter, Berlin (1977). Achte Auflage, de Gruyter Lehrbuch

    Google Scholar 

  34. Krantz, S.G.: Complex Analysis: The Geometric Viewpoint. Mathematical Association of America, Washington, D.C. (1990)

    MATH  Google Scholar 

  35. Kuznetsov, E.: Gyrogroups and left gyrogroups as transversals of a special kind. Algebra Discrete Math. 3, 54–81 (2003)

    Google Scholar 

  36. Lorentz, H.A., Einstein, A., Minkowski, H., Weyl, H.: The Principle of Relativity. Dover, New York, undated. With notes by A. Sommerfeld, Translated by W. Perrett and G.B. Jeffery, A collection of original memoirs on the special and general theory of relativity

    Google Scholar 

  37. Marsden, J.E.: Elementary Classical Analysis. Freeman, San Francisco (1974). With the assistance of Michael Buchner, Amy Erickson, Adam Hausknecht, Dennis Heifetz, Janet Macrae and William Wilson, and with contributions by Paul Chernoff, István Fáry and Robert Gulliver

    MATH  Google Scholar 

  38. McCleary, J.: Geometry from a Differentiable Viewpoint. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  39. Miller, A.I.: Albert Einstein’s Special Theory of Relativity. Springer, New York (1998). Emergence (1905) and early interpretation (1905–11), Includes a translation by the author of Einstein’s “On the electrodynamics of moving bodies”, Reprint of the 1981 edition

    Book  Google Scholar 

  40. Møller, C.: The Theory of Relativity. Clarendon, Oxford (1952)

    Google Scholar 

  41. Mumford, D., Series, C., Wright, D.: Indra’s Pearls: The Vision of Felix Klein. Cambridge University Press, New York (2002)

    MATH  Google Scholar 

  42. Prástaro, A., Rassias, Th.M.: Geometry of Partial Differential Equations. World Scientific, London (1994)

    Book  Google Scholar 

  43. Rassias, Th.M.: Book review: Analytic hyperbolic geometry and Albert Einstein’s special theory of relativity, by Abraham A. Ungar. Nonlinear Funct. Anal. Appl. 13(1), 167–177 (2008)

    Google Scholar 

  44. Rassias, Th.M.: Book review: A gyrovector space approach to hyperbolic geometry, by Abraham A. Ungar. J. Geom. Symmetry Phys. 18, 93–106 (2010)

    Google Scholar 

  45. Rassias, Th.M.: Constantin Caratheodory: An International Tribute (in two volumes). World Scientific, Singapore (1991)

    Book  Google Scholar 

  46. Rassias, Th.M.: The Problem of Plateau. World Scientific, London (1992)

    Book  MATH  Google Scholar 

  47. Rassias, Th.M.: Inner Product Spaces and Applications. Addison Wesley Longman, Pitman Research Notes in Mathematics Series, vol. 376, Harlo, Essex (1997)

    MATH  Google Scholar 

  48. Rassias, Th.M., Srivastava, H.M.: Analysis, Geometry and Groups: A Riemann Legacy Volume (in two volumes). Hadronic Press, Florida (1993)

    MATH  Google Scholar 

  49. Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics, vol. 149. Springer, New York (1994)

    MATH  Google Scholar 

  50. Sexl, R.U., Urbantke, H.K.: Relativity, Groups, Particles. Springer Physics. Springer, Vienna (2001). Special relativity and relativistic symmetry in field and particle physics, Revised and translated from the third German (1992) edition by Urbantke

    Book  MATH  Google Scholar 

  51. Silberstein, L.: The Theory of Relativity. MacMillan, London (1914)

    MATH  Google Scholar 

  52. Stachel, J.J.: History of relativity. In: Brown, L.M. Pais, A. Pippard, B. (eds.) Twentieth Century Physics, vol. I. Institute of Physics Publishing, Bristol (1995)

    Google Scholar 

  53. Stillwell, J.: Sources of Hyperbolic Geometry. American Mathematical Society, Providence (1996). Pages 10 and 35

    MATH  Google Scholar 

  54. Thomas, L.H.: The motion of the spinning electron. Nature 117, 514 (1926)

    Article  Google Scholar 

  55. Ungar, A.A.: Thomas rotation and the parametrization of the Lorentz transformation group. Found. Phys. Lett. 1(1), 57–89 (1988)

    Article  MathSciNet  Google Scholar 

  56. Ungar, A.A.: Quasidirect product groups and the Lorentz transformation group. In: Rassias, Th.M. (ed.) Constantin Carathéodory: An International Tribute, vol. I, II, pp. 1378–1392. World Scientific, Teaneck (1991)

    Google Scholar 

  57. Ungar, A.A.: Thomas precession and its associated grouplike structure. Am. J. Phys. 59(9), 824–834 (1991)

    Article  MathSciNet  Google Scholar 

  58. Ungar, A.A.: The abstract Lorentz transformation group. Am. J. Phys. 60(9), 815–828 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  59. Ungar, A.A.: Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics. Found. Phys. 27(6), 881–951 (1997)

    Article  MathSciNet  Google Scholar 

  60. Ungar, A.A.: The hyperbolic Pythagorean theorem in the Poincaré disc model of hyperbolic geometry. Am. Math. Mon. 106(8), 759–763 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ungar, A.A.: Gyrovector spaces in the service of hyperbolic geometry. In: Rassias, Th.M. (ed.) Mathematical Analysis and Applications, pp. 305–360. Hadronic Press, Palm Harbor (2000)

    Google Scholar 

  62. Ungar, A.A.: Möbius transformations of the ball, Ahlfors’ rotation and gyrovector spaces. In: Rassias, Th.M. (ed.) Nonlinear Analysis in Geometry and Topology, pp. 241–287. Hadronic Press, Palm Harbor (2000)

    Google Scholar 

  63. Ungar, A.A.: Beyond the Einstein Addition Law and Its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces. Fundamental Theories of Physics, vol. 117. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  64. Ungar, A.A.: On the unification of hyperbolic and Euclidean geometry. Complex Var. Theory Appl. 49(3), 197–213 (2004)

    MathSciNet  MATH  Google Scholar 

  65. Ungar, A.A.: Analytic Hyperbolic Geometry: Mathematical Foundations and Applications. World Scientific, Hackensack (2005)

    Book  MATH  Google Scholar 

  66. Ungar, A.A.: Gyrovector spaces and their differential geometry. Nonlinear Funct. Anal. Appl. 10(5), 791–834 (2005)

    MathSciNet  MATH  Google Scholar 

  67. Ungar, A.A.: Thomas precession: a kinematic effect of the algebra of Einstein’s velocity addition law. Comments on: “Deriving relativistic momentum and energy. II. Three-dimensional case” [European J. Phys. 26 (2005), no. 5, 851–856; mr2227176] by S. Sonego and M. Pin. Eur. J. Phys. 27(3), L17–L20 (2006)

    Article  MathSciNet  Google Scholar 

  68. Ungar, A.A.: Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity. World Scientific, Hackensack (2008)

    Book  MATH  Google Scholar 

  69. Ungar, A.A.: From Möbius to gyrogroups. Am. Math. Mon. 115(2), 138–144 (2008)

    MathSciNet  MATH  Google Scholar 

  70. Ungar, A.A.: A Gyrovector Space Approach to Hyperbolic Geometry. Morgan & Claypool Pub., San Rafael (2009)

    MATH  Google Scholar 

  71. Ungar, A.A.: Hyperbolic barycentric coordinates. Aust. J. Math. Anal. Appl. 6(1), 1–35 (2009)

    MathSciNet  Google Scholar 

  72. Ungar, A.A.: Barycentric Calculus in Euclidean and Hyperbolic Geometry: A Comparative Introduction. World Scientific, Hackensack (2010)

    Book  MATH  Google Scholar 

  73. Ungar, A.A.: Hyperbolic Triangle Centers: The Special Relativistic Approach. Springer, New York (2010)

    Book  MATH  Google Scholar 

  74. Ungar, A.A.: When relativistic mass meets hyperbolic geometry. Commun. Math. Anal. 10(1), 30–56 (2011)

    MathSciNet  MATH  Google Scholar 

  75. Vermeer, J.: A geometric interpretation of Ungar’s addition and of gyration in the hyperbolic plane. Topol. Appl. 152(3), 226–242 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  76. Walter, S.: The non-Euclidean style of Minkowskian relativity. In: Gray, J.J. (ed.) The Symbolic Universe: Geometry and Physics 1890–1930, pp. 91–127. Oxford Univ. Press, New York (1999)

    Google Scholar 

  77. Walter, S.: Book review: Beyond the Einstein addition law and its gyroscopic Thomas precession: The theory of gyrogroups and gyrovector spaces, by Abraham A. Ungar. Found. Phys. 32(2), 327–330 (2002)

    Article  Google Scholar 

  78. Taylor Whittaker, E.: From Euclid to Eddington. A Study of Conceptions of the External World. Cambridge University Press, Cambridge (1949)

    Google Scholar 

  79. Yiu, P.: The uses of homogeneous barycentric coordinates in plane Euclidean geometry. Int. J. Math. Educ. Sci. Technol. 31(4), 569–578 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Albert Ungar .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Themistocles M. Rassias on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ungar, A.A. (2012). Möbius Transformation and Einstein Velocity Addition in the Hyperbolic Geometry of Bolyai and Lobachevsky. In: Pardalos, P., Georgiev, P., Srivastava, H. (eds) Nonlinear Analysis. Springer Optimization and Its Applications, vol 68. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3498-6_41

Download citation

Publish with us

Policies and ethics