Skip to main content

Exotic n-D’Alembert PDEs and Stability

  • Chapter
Nonlinear Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 68))

Abstract

In the framework of the PDE’s algebraic topology, previously introduced by A. Prástaro, exotic n-d’Alembert PDEs are considered. These are n-d’Alembert PDEs, (dA) n , admitting Cauchy manifolds N⊂(dA) n identifiable with exotic spheres, or such that ∂N can be exotic spheres. For such equations, local and global existence theorems and stability theorems are obtained. (See also Prástaro in arXiv:1011.0081, 2010.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For general information on bordism groups and related problems in differential topology and PDE’s geometry, see, e.g., [5, 913, 15, 2229, 31, 47, 48, 5053]. For crystallographic groups, see the references quoted in [37]. For differential structures and algebraic topology of exotic spheres, see [68, 1621, 35, 3941, 46].

  2. 2.

    Here by the integral bordism group we mean the weak integral bordism group \(\varOmega^{E_{k}}_{n-1,w}\).

  3. 3.

    Recall that AMap(Ω,ℝ), Ω a group, has a natural structure of a Hopf algebra if Ω is a finite group. If Ω is not finite, then A has a structure of a Hopf algebra in an extended sense. (See [25].)

  4. 4.

    An extended 0-crystal PDE \(E_{k}\subset J^{k}_{n}(W)\) is not necessarily a 0-crystal PDE. In fact, in order for E k to be an extended 0-crystal PDE it is enough that \(\varOmega _{n-1,w}^{E_{k}}=0\). This does not necessarily imply that \(\varOmega_{n-1}^{E_{k}}=0\).

  5. 5.

    In this paper, we will use the same notation adopted in [40]: \(\thickapprox\) homeomorphism; ≅ diffeomorphism; ≊ homotopy equivalence; ≃ homotopy.

  6. 6.

    If n=2 we simply say d’Alembert equation and we will put (dA)≡(dA)2.

  7. 7.

    For example, for n=2 one has F=u xy uu x u y , and for n=3 one has F=u xyz u 2u xy u z uu xz u y u+u x u y u z .

  8. 8.

    Θ n denotes the additive group of diffeomorphism classes of oriented smooth homotopy spheres of dimension n.

  9. 9.

    Let us emphasize that to Ω[V] belong also (not necessarily regular) solutions V′⊂E k such that \(N_{0}'\sqcup N_{1}'=N_{0}\sqcup N_{1}\), where \(\partial V'=N_{0}'\bigcup P'\bigcup N_{1}'\).

  10. 10.

    In the following, if there are no reasons for confusion, we shall also call a stable solution a smooth regular solution of a PDE E k JD k(W) that is average asymptotic stable.

  11. 11.

    τ 0 has just the physical dimension of a time.

  12. 12.

    (dA) n considered in this theorem is a submanifold of JD n(E), hence it coincides with Z n C n .

References

  1. Agarwal, R.P., Prástaro, A.: Geometry of PDEs. III(I): webs on PDEs and integral bordism groups. The general theory. Adv. Math. Sci. Appl. 17(1), 239–266 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, R.P., Prástaro, A.: Geometry of PDEs. III(II): webs on PDEs and integral bordism groups. Applications to Riemannian geometry PDEs. Adv. Math. Sci. Appl. 17(1), 267–281 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Agarwal, R.P., Prástaro, A.: Singular PDE’s geometry and boundary value problems. J. Nonlinear Convex Anal. 9(3), 417–460 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Agarwal, R.P., Prástaro, A.: On singular PDE’s geometry and boundary value problems. Appl. Anal. 88(8), 1115–1131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boardman, J.M.: Singularities of differentiable maps. Publ. Math. IHÉS 33, 21–57 (1967)

    MathSciNet  MATH  Google Scholar 

  6. Brieskorn, E.V.: Examples of singular normal complex spaces which are topological manifolds. Proc. Natl. Acad. Sci. 55(6), 1395–1397 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brieskorn, E.V.: Beispiele zur Differentialtopologie von Singularitäten. Invent. Math 2, 1–14 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry-Methods and Applications. Part I; Part II; Part III Springer, New York (1990). Original Russian edition: Sovremennaja Geometria: Metody i Priloženia. Nauka, Moskva (1979)

    Google Scholar 

  9. Goldshmidt, H.: Integrability criteria for systems of non-linear partial differential equations. J. Differ. Geom. 1, 269–307 (1967)

    Google Scholar 

  10. Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Springer, New York (1973)

    Book  MATH  Google Scholar 

  11. Gromov, M.: Partial Differential Relations. Springer, Berlin (1986)

    MATH  Google Scholar 

  12. Hirsch, M.: Differential Topology. Springer, New York (1976)

    Book  MATH  Google Scholar 

  13. Krasilśhchik, I.S., Lychagin, V., Vinogradov, A.M.: Geometry of Jet Spaces and Nonlinear Partial Differential Equations. Gordon and Breach Science, Amsterdam (1986)

    Google Scholar 

  14. Ljapunov, A.M.: Stability of Motion; with an Contribution by V.A. Pliss and an Introduction by V.P. Basov. Mathematics in Science and Engineering, vol. 30. Academic Press, New York (1966)

    Google Scholar 

  15. Lychagin, V., Prástaro, A.: Singularities of Cauchy data, characteristics, cocharacteristics and integral cobordism. Diff. Geom. Appl. 4, 283–300 (1994)

    Article  MATH  Google Scholar 

  16. Milnor, J.: On manifolds homeomorphic to the 7-sphere. Ann. Math. 64(2), 399–405 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moise, E.: Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermuntung. Ann. Math. Second Ser. 56, 96–114 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moise, E.: Geometric Topology in Dimension 2 and 3. Springer, Berlin (1977)

    Google Scholar 

  19. Nash, J.: Real algebraic manifolds. Ann. Math. 56(2), 405–421 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  20. Perelman, G.: The entropy formula for the Ricci flow and its geometry applications (2002). arXiv:math/0211159v1

  21. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math/0303109v1

  22. Prástaro, A.: Quantum geometry of PDEs. Rep. Math. Phys. 30(3), 273–354 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Prástaro, A.: Quantum and integral (co)bordisms in partial differential equations. Acta Appl. Math. 51, 243–302 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Prástaro, A.: (Co)bordism groups in PDEs. Acta Appl. Math. 59(2), 111–202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Prástaro, A.: (Co)bordism groups in quantum PDEs. Acta Appl. Math. 64(2–3), 111–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Prástaro, A.: Quantized Partial Differential Equations. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  27. Prástaro, A.: Geometry of PDEs. I: integral bordism groups in PDE’s. J. Math. Anal. Appl. 319, 547–566 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Prástaro, A.: Geometry of PDEs. II: variational PDE’s and integral bordism groups. J. Math. Anal. Appl. 321, 930–948 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Prástaro, A.: Geometry of PDEs. IV: Navier–Stokes equation and integral bordism groups. J. Math. Anal. Appl. 338(2), 1140–1151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Prástaro, A.: (Un)stability and bordism groups in PDEs. Banach J. Math. Anal. 1(1), 139–147 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Prástaro, A.: Extended crystal PDEs stability. I: The general theory. Math. Comput. Model. 49(9–10), 1759–1780 (2009)

    Article  MATH  Google Scholar 

  32. Prástaro, A.: Extended crystal PDEs stability. II: The extended crystal MHD-PDEs. Math. Comput. Model. 49(9–10), 1781–1801 (2009)

    Article  MATH  Google Scholar 

  33. Prástaro, A.: On the extended crystal PDE’s stability. I: The n-d’Alembert extended crystal PDEs. Appl. Math. Comput. 204(1), 63–69 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Prástaro, A.: On the extended crystal PDEs stability. II: Entropy-regular-solutions in MHD-PDEs. Appl. Math. Comput. 204(1), 82–89 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Prástaro, A.: Surgery and bordism groups in quantum partial differential equations. I: The quantum Poincaré conjecture. Nonlinear Anal. Theory Methods Appl. 71(12), 502–525 (2009)

    Article  Google Scholar 

  36. Prástaro, A.: Surgery and bordism groups in quantum partial differential equations. II: Variational quantum PDEs. Nonlinear Anal. Theory Methods Appl. 71(12), 526–549 (2009)

    Article  Google Scholar 

  37. Prástaro, A.: Extended crystal PDEs. arXiv:0811.3693

  38. Prástaro, A.: Quantum extended crystal super PDEs. Nonlinear Anal. Real World Appl. (in press). arXiv:0906.1363

  39. Prástaro, A.: Exotic heat PDEs. Commun. Math. Anal. 10(1), 64–81 (2011). arXiv:1006.4483

    MathSciNet  MATH  Google Scholar 

  40. Prástaro, A.: Exotic heat PDEs. II, arXiv:1009.1176. To appear in the book: Essays in Mathematics and Its Applications—Dedicated to Stephen Smale. (Eds. P.M. Pardalos and Th.M. Rassias). Springer, New York

  41. Prástaro, A.: Exotic PDEs. arXiv:1101.0283

  42. Prástaro, A.: Exotic n-d’Alembert PDEs and stability (2010). arXiv:1011.0081

  43. Prástaro, A., Rassias, Th.M.: A geometric approach to an equation of J. d’Alembert. Proc. Am. Math. Soc. 123(5), 1597–1606 (1995)

    Article  MATH  Google Scholar 

  44. Prástaro, A., Rassias, Th.M.: A geometric approach of the generalized d’Alembert equation. J. Comput. Appl. Math. 113(1–2), 93–122 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Prástaro, A., Rassias, Th.M.: Ulam stability in geometry of PDEs. Nonlinear Funct. Anal. Appl. 8(2), 259–278 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Smale, S.: Generalized Poincaré conjecture in dimension greater than four. Ann. Math. 74(2), 391–406 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  47. Switzer, A.S.: Algebraic Topology-Homotopy and Homology. Springer, Berlin (1976)

    Google Scholar 

  48. Tognoli, A.: Su una congettura di nash. Ann. Sc. Norm. Super. Pisa 27, 167–185 (1973)

    MathSciNet  MATH  Google Scholar 

  49. Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1960)

    MATH  Google Scholar 

  50. Wall, C.T.C.: Determination of the cobordism ring. Ann. Math. 72, 292–311 (1960)

    Article  MATH  Google Scholar 

  51. Wall, C.T.C.: Surgery on Compact Manifolds. London Math. Soc. Monographs, vol. 1. Academic Press, New York (1970)

    MATH  Google Scholar 

  52. Wall, C.T.C.: In: Ranicki, A.A. (ed.) Surgery on Compact Manifolds, 2nd edn. Amer. Math. Soc. Surveys and Monographs, vol. 69. Amer. Math. Soc., Providence (1999)

    Google Scholar 

  53. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Scott, Foresman, Glenview (1971)

    MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Editors for their kind invitation to contribute my paper to this book, dedicated to Themistocles M. Rassias on occasion of his 60th birthday.

Work partially supported by MIUR Italian grants “PDE’s Geometry and Applications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Prástaro .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Themistocles M. Rassias on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Prástaro, A. (2012). Exotic n-D’Alembert PDEs and Stability. In: Pardalos, P., Georgiev, P., Srivastava, H. (eds) Nonlinear Analysis. Springer Optimization and Its Applications, vol 68. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3498-6_36

Download citation

Publish with us

Policies and ethics