Plasticity of Brain Feeding Circuits in Response to Food



Feeding and energy expenditure are regulated by neuronal circuits of the brain. Feeding, by definition, occurs in most mammals during waking mandating a tight relationship between systems regulating sleep/wake cycles and energy metabolism. This is accomplished not only by neuronal interactions between brain regions responsible for these functions, but also by sharing intracellular and intercellular signaling modalities. Peripheral hormones associated with energy metabolism not only affect the brain structures that have been classically associated with endocrine and autonomic functions, but also alter the function of higher brain regions, including the hippocampus and cerebral cortex. A better understanding of the mechanism of feeding behavior and energy expenditure associated with brain structures will also enhance our ability to combat disorders such as diabetes and obesity, which are among the most prevalent medical problems of both developed and developing societies.


Synaptic Plasticity Lateral Hypothalamus Input Organization Hypothalamic Neuron Negative Energy Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Clifton PG, Vickers SP, Somerville EM. Little and often: ingestive behavior patterns following hippocampal lesions in rats. Behav Neurosci. 1998;112:502–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70.PubMedCrossRefGoogle Scholar
  3. 3.
    Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999;20:68–100.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404:661–71.PubMedGoogle Scholar
  5. 5.
    Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: implications for obesity. Nat Rev Neurosci. 2003;4:901–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Mayer J, Thomas DW. Regulation of food intake and obesity. Science. 1967;156:328–37.PubMedCrossRefGoogle Scholar
  7. 7.
    Woods SC, Seeley RJ, Porte Jr D, Schwartz MW. Signals that regulate food intake and energy homeostasis. Science. 1998;280:1378–83.PubMedCrossRefGoogle Scholar
  8. 8.
    Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B. 1953;140:579–92.CrossRefGoogle Scholar
  9. 9.
    Hetherington AW. The relation of various hypothalamic lesions to adiposity and other phenomena in the rat. Am J Physiol. 1941;133:326.Google Scholar
  10. 10.
    Hetherington AW, Ranson SW. Hypothalamic lesions and adipocity in the rat. Anat Rec. 1940;78:149.CrossRefGoogle Scholar
  11. 11.
    Hetherington AW, Ranson SW. The relation of various hypothalamic lesions to adiposity in the rat. J Comp Neurol. 1942;76:475–99.CrossRefGoogle Scholar
  12. 12.
    Brobeck JR, Tepperman J, Long CNH. Experimental hypothalamic hyperphagia in the albino rat. Yale J Biol Med. 1943;15:831–53.PubMedGoogle Scholar
  13. 13.
    Brobeck JR. Mechanisms of the development of obesity in animals with hypothalamic lesions. Physiol Rev. 1946;26:541–59.PubMedGoogle Scholar
  14. 14.
    Anand BK, Brobeck JR. Localization of a feeding center in the hypothalamus of the rat. Proc Soc Exp Biol Med. 1951;77:323–4.PubMedGoogle Scholar
  15. 15.
    Stellar E. The physiology of motivation. Psychol Rev. 1954;61:5–22.PubMedCrossRefGoogle Scholar
  16. 16.
    Hervey GR. The effects of lesions in the hypothalamus in parabiotic rats. J Physiol. 1959;145:336–52.PubMedGoogle Scholar
  17. 17.
    Coleman DL, Hummel KP. Effects of parabiosis of normal with genetically diabetic mice. Am J Physiol. 1969;217:1298–304.PubMedGoogle Scholar
  18. 18.
    Coleman DL. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia. 1978;14:141–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P. Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 1996;387:113–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Huang XF, Koutcherov I, Lin S, Wang HQ, Storlien L. Localization of leptin receptor mRNA expression in mouse brain. Neuroreport. 1996;7:2635–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Couce ME, Burguera B, Parisi JE, Jensen MD, Lloyd RV. Localization of leptin receptor in the human brain. Neuroendocrinology. 1997;66:145–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Lam TK, Schwartz GJ, Rossetti L. Hypothalamic sensing of fatty acids. Nat Neurosci. 2005;8:579–84.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee K, Li B, Xi X, Suh Y, Martin RJ. Role of neuronal energy status in the regulation of adenosine 5’-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior. Endocrinology. 2005;146:3–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Seeley RJ, York DA. Fuel sensing and the central nervous system (CNS): implications for the regulation of energy balance and the treatment for obesity. Obes Rev. 2005;6:259–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Bray GA. Afferent signals regulating food intake. Proc Nutr Soc. 2000;59:373–84.PubMedCrossRefGoogle Scholar
  28. 28.
    Woods SC, Schwartz MW, Baskin DG, Seeley RJ. Food intake and the regulation of body weight. Annu Rev Psychol. 2000;51:255–77.PubMedCrossRefGoogle Scholar
  29. 29.
    Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science. 2004;304:110–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Sternson SM, Shepherd GM, Friedman JM. Topographic mapping of VMH -> arcuate nucleus microcircuits and their reorganization by fasting. Nat Neurosci. 2005;8:1356–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Horvath TL, Diano S. The floating blueprint of hypothalamic feeding circuits. Nat Rev Neurosci. 2004;5:662–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Horvath TL. The hardship of obesity: a soft-wired brain to feed and retain. Nat Neurosci. 2005;8:561–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Abizaid A, Liu Z-W, Andrews ZB, Shanabrough M, Borok E, Elsworth J, Roth RH, Sleeman M, Picciotto MR, Tschop M, Gao X-B, Horvath TL. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116:3229–39.PubMedCrossRefGoogle Scholar
  34. 34.
    Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath B, Gaskin FS, Nonaka N, Jaeger LB, Banks WA, Morley JE, Pinto S, Sherwin RS, Xu L, Yamada KA, Sleeman MW, Tschop MH, Horvath TL. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci. 2006;9:381–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Gao Q, Mezei G, Rao Y, Nie Y, Choi CS, Bechmann I, Naftolin F, Leranth C, Torran-Allerand D, Priest CA, Roberts JL, Gao XB, Mobbs C, Shulman G, Diano S, Horvath TL. Anorexigenic estradiol mimics leptin’s effect on re-wiring of melanocortin cells in obese animals. Nat Med. 2007;13(1):89–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Andrews ZB, Liu Z-W, Wallingford N, Erion DM, Borok E, Friedman JM, Tschop MH, Shanabrough M, Cline G, Shulman GI, Coppola A, Gao X-B, Horvath TL, Diano S. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature. 2008;454(7206):846–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Gyengesi E, Liu ZW, D’Agostino G, Gan G, Horvath TL, Gao XB, Diano S. Corticosterone regulates synaptic input organization of POMC and NPY/AgRP neurons in adult mice. Endocrinology. 2010;151:5395–401.PubMedCrossRefGoogle Scholar
  38. 38.
    Horvath TL, Sarman B, García-Cáceres C, Enriori PJ, Shanabrough M, Borok E, Argente J, Chowen JA, Perez-Tilve D, Pfluger PT, Brönneke HS, Levin BE, Diano S, Cowley MA, Tschöp MH. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. PNAS. 2010;107(33):14875–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Benoit S, Schwartz M, Baskin D, Woods SC, Seeley RJ. CNS melanocortin system involvement in the regulation of food intake. Horm Behav. 2000;37:299–305.PubMedCrossRefGoogle Scholar
  40. 40.
    Cone RD, Cowley MA, Butler AA, Fan W, Marks DL, Low MJ. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord. 2001;25 Suppl 5:S63–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Seeley RJ, Drazen DL, Clegg DJ. The critical role of the melanocortin system in the control of energy balance. Annu Rev Nutr. 2004;24:133–49.PubMedCrossRefGoogle Scholar
  42. 42.
    van den Pol AN. Weighing the role of hypothalamic feeding neurotransmitters. Neuron. 2003;40:1059–61.PubMedCrossRefGoogle Scholar
  43. 43.
    Obici S, Rossetti L. Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology. 2003;144:5172–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Horvath TL, Bechmann I, Kalra SP, Naftolin F, Leranth C. Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res. 1997;756:283–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Hentges ST, Nishiyama M, Overstreet LS, Stenzel-Poore M, Williams JT, Low MJ. GABA release from proopiomelanocortin neurons. J Neurosci. 2004;24:1578–83.PubMedCrossRefGoogle Scholar
  46. 46.
    Boston BA, Blaydon KM, Varnerin J, Cone RD. Independent and additive effects of central POMC and leptin pathways on murine obesity. Science. 1997;278:1641–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Ellacott KL, Cone RD. The central melanocortin system and the integration of short- and long-term regulators of energy homeostasis. Recent Prog Horm Res. 2004;59:395–408.PubMedCrossRefGoogle Scholar
  48. 48.
    Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005;8:571–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature. 1997;385:165–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Biebermann H, Castaneda TR, van Landeghem F, von Deimling A, Escher F, Brabant G, Hebebrand J, Hinney A, Tschop MH, Gruters A, Krude H. A role for beta-melanocyte-stimulating hormone in human body-weight regulation. Cell Metab. 2006;3:141–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Lee YS, Challis BG, Thompson DA, Yeo GS, Keogh JM, Madonna ME, Wraight V, Sims M, Vatin V, Meyre D, Shield J, Burren C, Ibrahim Z, Cheetham T, Swift P, Blackwood A, Hung CC, Wareham NJ, Froguel P, Millhauser GL, O’Rahilly S, Farooqi IS. A POMC variant implicates beta-melanocyte-stimulating hormone in the control of human energy balance. Cell Metab. 2006;3:135–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Adan RA, Cone RD, Burbach JP, Gispen WH. Differential effects of melanocortin peptides on neural melanocortin receptors. Mol Pharmacol. 1994;46:1182–90.PubMedGoogle Scholar
  53. 53.
    Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol. 1994;8:1298–308.PubMedCrossRefGoogle Scholar
  54. 54.
    Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science. 1997;278:135–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Baskin DG, Breininger JF, Schwartz MW. Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes. 1999;48:828–33.PubMedCrossRefGoogle Scholar
  56. 56.
    Clark JT, Kalra PS, Crowley WR, Kalra SP. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology. 1984;115:427–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Stanley BG, Leibowitz SF. Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci. 1984;35:2635–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Sahu A, Kalra SP, Crowley WR, Kalra PS. Evidence that NPY-containing neurons in the brainstem project into selected hypothalamic nuclei: implication in feeding behavior. Brain Res. 1988;457:376–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Chronwall BM, Chase TN, O’Donohue TL. Coexistence of neuropeptide Y and somatostatin in rat and human cortical and rat hypothalamic neurons. Neurosci Lett. 1984;52:213–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Morley JE, Hernandez EN, Flood JF. Neuropeptide Y increases food intake in mice. Am J Physiol. 1987;253:R516–22.PubMedGoogle Scholar
  61. 61.
    Sahu A, Kalra PS, Kalra SP. Food deprivation and ingestion induce reciprocal changes in neuropeptide Y concentrations in the paraventricular nucleus. Peptides. 1988;9:83–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Sanacora G, Kershaw M, Finkelstein JA, White JD. Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation. Endocrinology. 1990;127:730–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Wilding JP, Gilbey SG, Bailey CJ, Batt RA, Williams G, Ghatei MA, Bloom SR. Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology. 1993;132:1939–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Quillan JM, Sadee W, Wei ET, Jimenez C, Ji L, Chang JK. A synthetic human Agouti-related protein-(83-132)-NH2 fragment is a potent inhibitor of melanocortin receptor function. FEBS Lett. 1998;428:59–62.PubMedCrossRefGoogle Scholar
  65. 65.
    Rossi M, Kim MS, Morgan DG, Small CJ, Edwards CM, Sunter D, Abusnana S, Goldstone AP, Russell SH, Stanley SA, Smith DM, Yagaloff K, Ghatei MA, Bloom SR. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology. 1998;139:4428–31.PubMedCrossRefGoogle Scholar
  66. 66.
    Tritos NA, Elmquist JK, Mastaitis JW, Flier JS, Maratos-Flier E. Characterization of expression of hypothalamic appetite-regulating peptides in obese hyperleptinemic brown adipose tissue-deficient (uncoupling protein-promoter-driven diphtheria toxin A) mice. Endocrinology. 1998;139:4634–41.PubMedCrossRefGoogle Scholar
  67. 67.
    Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411:480–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Horvath TL, Naftolin F, Kalra SP, Leranth C. Neuropeptide-Y innervation of beta-endorphin-containing cells in the rat mediobasal hypothalamus: a light and electron microscopic double immunostaining analysis. Endocrinology. 1992;131:2461–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Bates SH, Myers Jr MG. The role of leptin receptor signaling in feeding and neuroendocrine function. Trends Endocrinol Metab. 2003;14:447–52.PubMedCrossRefGoogle Scholar
  70. 70.
    Sahm UG, Qarawi MA, Olivier GW, Ahmed AR, Branch SK, Moss SH, Pouton CW. The melanocortin (MC3) receptor from rat hypothalamus: photoaffinity labelling and binding of alanine-substituted alpha-MSH analogues. FEBS Lett. 1994;350:29–32.PubMedCrossRefGoogle Scholar
  71. 71.
    Diano S, Naftolin F, Goglia F, Horvath TL. Segregation of the intra- and extrahypothalamic neuropeptide Y and catecholaminergic inputs on paraventricular neurons, including those producing thyrotropin-releasing hormone. Regul Pept. 1998;75–76:117–26.PubMedCrossRefGoogle Scholar
  72. 72.
    Diano S, Naftolin F, Goglia F, Csernus V, Horvath TL. Monosynaptic pathway between the arcuate nucleus expressing glial type II iodothyronine 5’-deiodinase mRNA and the median eminence-projective TRH cells of the rat paraventricular nucleus. J Neuroendocrinol. 1998;10:731–42.PubMedCrossRefGoogle Scholar
  73. 73.
    Cowley MA, Pronchuk N, Fan W, Dinulescu DM, Colmers WF, Cone RD. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron. 1999;24:155–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang CY, Mountjoy K, Kishi T, Elmquist JK, Lowell BB. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell. 2005;123:493–505.PubMedCrossRefGoogle Scholar
  75. 75.
    Gropp E, Shanabrough M, Borok E, Xu AW, Janoshek R, Buch T, Plum L, Balthasar N, Hampel B, Waisman A, Barsh GS, Horvath TL, Bruning J. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci. 2005;8:1289–91.PubMedCrossRefGoogle Scholar
  76. 76.
    Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science. 2005;310:683–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Wu Q, Boyle MP, Palmiter RD. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell. 2009;137(7):1225–34.PubMedCrossRefGoogle Scholar
  78. 78.
    Dietrich MO, Horvath TL. GABA keeps up an appetite for life. Cell. 2009;137:1177–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature. 1996;381:415–21.PubMedCrossRefGoogle Scholar
  80. 80.
    Qian S, Chen H, Weingarth D, Trumbauer ME, Novi DE, Guan X, Yu H, Shen Z, Feng Y, Frazier E, Chen A, Camacho RE, Shearman LP, Gopal-Truter S, MacNeil DJ, Van der Ploeg LH, Marsh DJ. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol Cell Biol. 2002;22:5027–35.PubMedCrossRefGoogle Scholar
  81. 81.
    Broberger C, De Lecea L, Sutcliffe JG, Hokfelt T. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol. 1998;402:460–74.PubMedCrossRefGoogle Scholar
  82. 82.
    Ludwig DS, Mountjoy KG, Tatro JB, Gillette JA, Frederich RC, Flier JS, Maratos-Flier E. Melanin-concentrating hormone: a functional melanocortin antagonist in the hypothalamus. Am J Physiol. 1998;274:627–33.Google Scholar
  83. 83.
    Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18:9996–10015.PubMedGoogle Scholar
  84. 84.
    Saito Y, Cheng M, Leslie FM, Civelli O. Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol. 2001;435:26–40.PubMedCrossRefGoogle Scholar
  85. 85.
    Horvath TL, Diano S, van den Pol AN. Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J Neurosci. 1999;19:1072–87.PubMedGoogle Scholar
  86. 86.
    Elias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J, Tatro JB, Hoffman GE, Ollmann MM, Barsh GS, Sakurai T, Yanagisawa M, Elmquist JK. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol. 1998;402:442–59.PubMedCrossRefGoogle Scholar
  87. 87.
    Hakansson ML, Brown H, Ghilardi N, Skoda RC, Meister B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J Neurosci. 1998;18:559–7278.PubMedGoogle Scholar
  88. 88.
    Torrealba F, Yanagisawa M, Saper CB. Colocalization of orexin and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience. 2003;119:1033–44.PubMedCrossRefGoogle Scholar
  89. 89.
    Toshinai K, Date Y, Murakami N, Shimada M, Mondal MS, Shimbara T, Guan JL, Wang QP, Funahashi H, Sakurai T, Shioda S, Matsukura S, Kangawa K, Nakazato M. Ghrelin induced food intake is mediated via the orexin pathway. Endocrinology. 2003;144:1506–12.PubMedCrossRefGoogle Scholar
  90. 90.
    Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, Kageyama H, Kunita S, Takahashi S, Goto K, Koyama Y, Shioda S, Yanagisawa M. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron. 2005;46:297–308.PubMedCrossRefGoogle Scholar
  91. 91.
    Guan JL, Uehara K, Lu S, Wang QP, Funahashi H, Sakurai T, Yanagizawa M, Shioda S. Reciprocal synaptic relationships between orexin- and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation. Int J Obes Relat Metab Disord. 2002;26:1523–32.PubMedCrossRefGoogle Scholar
  92. 92.
    van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK. Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron. 2004;42:635–52.PubMedCrossRefGoogle Scholar
  93. 93.
    Li Y, Gao XB, Sakurai T, van den Pol AN. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron. 2002;36:1169–81.PubMedCrossRefGoogle Scholar
  94. 94.
    Gao XB, van den Pol AN. Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. J Physiol. 2001;533:237–52.PubMedCrossRefGoogle Scholar
  95. 95.
    Diano S, Horvath B, Urbanski HF, Sotonyi P, Horvath TL. Fasting activates the non-human primate hypocretin (orexin) system and its postsynaptic targets. Endocrinology. 2003;144:3774–8; first published July 3 2003 as doi: 10.1210/en.2003-0274.Google Scholar
  96. 96.
    Horvath TL, Gao XB. Inpur organization and plasticityof hypocretin neurons: possible clues for obesity’s association with insomnia. Cell Metab. 2005;1:279–86.PubMedCrossRefGoogle Scholar
  97. 97.
    Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92:573–85.PubMedCrossRefGoogle Scholar
  98. 98.
    Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS, van den Pol AN. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol. 1999;415:145–59.PubMedCrossRefGoogle Scholar
  99. 99.
    Jain MR, Horvath TL, Kalra PS, Kalra SP. Evidence that NPY Y1 receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats. Regul Pept. 1999;87:19–24.CrossRefGoogle Scholar
  100. 100.
    Yamanaka A, Kunii K, Nambu T, Tsujino N, Sakai A, Matsuzaki I, Miwa Y, Goto K, Sakurai T. Orexin-induced food intake involves neuropeptide Y pathway. Brain Res. 2000;859:404–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Sahu A. Interactions of neuropeptide Y, hypocretin-I (orexin A) and melanin-concentrating hormone on feeding in rats. Brain Res. 2002;944:232–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Willie JT, Chemelli RM, Sinton CM, Yanagisawa M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci. 2001;24:429–58.PubMedCrossRefGoogle Scholar
  103. 103.
    Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98:437–51.PubMedCrossRefGoogle Scholar
  104. 104.
    Fu LY, Acuna-Goycolea C, van den Pol AN. Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms: tonic depression of the hypothalamic arousal system. J Neurosci. 2004;24:8741–51.PubMedCrossRefGoogle Scholar
  105. 105.
    Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek R, Kanarek R, Maratos-Flier E. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature. 1996;380:243–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature. 1998;396:670–4.PubMedCrossRefGoogle Scholar
  107. 107.
    Kennedy AR, Todd JF, Stanley SA, Abbott CR, Small CJ, Ghatei MA, Bloom SR. Melanin-concentrating hormone (MCH) suppresses thyroid stimulating hormone (TSH) release, in vivo and in vitro, via the hypothalamus and the pituitary. Endocrinology. 2001;142:3265–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Alon T, Friedman JM. Late-onset leanness in mice with targeted ablation of melanin concentrating hormone neurons. J Neurosci. 2006;26:389–97.PubMedCrossRefGoogle Scholar
  109. 109.
    Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494:528–48.PubMedCrossRefGoogle Scholar
  110. 110.
    Horvath TL. Suprachiasmatic efferents avoid phenestrated capillaries but innervate neuroendocrine cells including those producing dopamine. Endocrinology. 1997;138:1312–20.PubMedCrossRefGoogle Scholar
  111. 111.
    Horvath TL. An alternate pathway for visual signal integration into the hypothalamo-pituitary axis: retinorecipient intergeniculate neurons project to various regions of the hypothalamus and innervate neuroendocrine cells including those producing dopamine. J Neurosci. 1998;18:1546–58.PubMedGoogle Scholar
  112. 112.
    Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci. 2003;23:10691–702.PubMedGoogle Scholar
  113. 113.
    Bellinger LL, Bernardis LL. The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies. Physiol Behav. 2002;76:431–42.PubMedCrossRefGoogle Scholar
  114. 114.
    Gooley JJ, Schomer A, Saper CB. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci. 2006;9:398–407.PubMedCrossRefGoogle Scholar
  115. 115.
    ter Horst GJ, Luiten PG. The projections of the dorsomedial hypothalamic nucleus in the rat. Brain Res Bull. 1986;16:231–48.PubMedCrossRefGoogle Scholar
  116. 116.
    Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB. Afferents to the ventrolateral preoptic nucleus. J Neurosci. 2002;22:977–90.PubMedGoogle Scholar
  117. 117.
    van den Top M, Lee K, Whyment AD, Blanks AM, Spanswick D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat Neurosci. 2004;7:493–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia-Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Cone RD, Horvath TL. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37:649–61.PubMedCrossRefGoogle Scholar
  119. 119.
    Spanswick D, Smith MA, Groppi VE, Logan SD, Ashford ML. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature. 1997;390:521–5.PubMedCrossRefGoogle Scholar
  120. 120.
    Spanswick D, Smith MA, Mirshamsi S, Routh VH, Ashford ML. Insulin activates ATP-sensitive K  +  channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci. 2000;3:757–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Miyata S, Nakashima T, Kiyohara T. Structural dynamics of neural plasticity in the supraoptic nucleus of the rat hypothalamus during dehydration and rehydration. Brain Res Bull. 1994;34:169–75.PubMedCrossRefGoogle Scholar
  122. 122.
    Stern JE, Armstrong WE. Reorganization of the dendritic trees of oxytocin and vasopressin neurons of the rat supraoptic nucleus during lactation. J Neurosci. 1998;18:841–53.PubMedGoogle Scholar
  123. 123.
    Theodosis DT, Rougon G, Poulain DA. Retention of embryonic features by an adult neuronal system capable of plasticity: polysialylated neural cell adhesion molecule in the hypothalamo-neurohypophysial system. Proc Natl Acad Sci USA. 1991;88:5494–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Garcia-Segura LM, Chowen JA, Parducz A, Naftolin F. Gonadal hormones as promoters of structural synaptic plasticity: cellular mechanisms. Prog Neurobiol. 1994;44:279–307.PubMedCrossRefGoogle Scholar
  125. 125.
    Parducz A, Zsarnovszky A, Naftolin F, Horvath TL. Estradiol affects axo-somatic contacts of neuroendocrine cells in the arcuate nucleus of adult rats. Neuroscience. 2003;117:791–4.PubMedCrossRefGoogle Scholar
  126. 126.
    Zsarnovszky A, Horvath TL, Garcia-Segura LM, Horvath B, Naftolin F. Oestrogen-induced changes in the synaptology of the monkey (Cercopithecus aethiops) arcuate nucleus during gonadotropin feedback. J Neuroendocrinol. 2001;13:22–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Xiong JJ, Karsch FJ, Lehman MN. Evidence for seasonal plasticity in the gonadotropin-releasing hormone (GnRH) system of the ewe: changes in synaptic inputs onto GnRH neurons. Endocrinology. 1997;138:1240–50.PubMedCrossRefGoogle Scholar
  128. 128.
    Malenka RC, Bear MF. LTP and LTD; an embarrassment of riches. Neuron. 2004;44:5–21.PubMedCrossRefGoogle Scholar
  129. 129.
    Oomura Y, Yoshimatsu H. Neural network of glucose monitoring system. J Auton Nerv Syst. 1984;10:359–72.PubMedCrossRefGoogle Scholar
  130. 130.
    Storlien LH. The role of the ventromedial hypothalamic area in periprandial glucoregulation. Life Sci. 1985;36:505–14.PubMedCrossRefGoogle Scholar
  131. 131.
    McCrimmon RJ, Fan X, Ding Y, Zhu W, Jacob RJ, Sherwin RS. Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes. 2004;53:1953–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferre P, Birnbaum MJ, Stuck BJ, Kahn BB. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004;428:569–74.PubMedCrossRefGoogle Scholar
  133. 133.
    Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15–25.PubMedCrossRefGoogle Scholar
  134. 134.
    Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 2005;309:943–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, Aguilar-Bryan L, Rossetti L. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005;434:1026–31.PubMedCrossRefGoogle Scholar
  136. 136.
    Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain-liver circuit regulates glucose homeostasis. Cell Metab. 2005;1:53–61.PubMedCrossRefGoogle Scholar
  137. 137.
    King BM. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav. 2006;87:221–44.PubMedCrossRefGoogle Scholar
  138. 138.
    Pocai A, Lam TK, Obici S, Gutierrez-Juarez R, Muse ED, Arduini A, Rossetti L. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest. 2006;116:1081–91.PubMedCrossRefGoogle Scholar
  139. 139.
    Kim EK, Miller I, Aja S, Landree LE, Pinn M, McFadden J, Kuhajda FP, Moran TH, Ronnett GV. C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J Biol Chem. 2004;279:19970–6.PubMedCrossRefGoogle Scholar
  140. 140.
    Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS, Yun JY, Namgoong IS, Ha J, Park IS, Lee IK, Viollet B, Youn JH, Lee HK, Lee KU. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med. 2004;10:727–33.PubMedCrossRefGoogle Scholar
  141. 141.
    Landree LE, Hanlon AL, Strong DW, Rumbaugh G, Miller IM, Thupari JN, Connolly EC, Huganir RL, Richardson C, Witters LA, Kuhajda FP, Ronnett GV. C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism. J Biol Chem. 2004;279:3817–27.PubMedCrossRefGoogle Scholar
  142. 142.
    Horvath TL, Andrews ZB, Diano S. Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol Metab. 2009;20(2):78–87.PubMedCrossRefGoogle Scholar
  143. 143.
    Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, Kahn BB. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 2002;415:339–43.PubMedCrossRefGoogle Scholar
  144. 144.
    Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE, Williams LM, Hawley SA, Hardie DG, Grossman AB, Korbonits M. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem. 2005;280:25196–201.PubMedCrossRefGoogle Scholar
  145. 145.
    Wollmann G, Acuna-Goycolea C, van den Pol AN. Direct excitation of hypocretin/orexin cells by extracellular ATP at P2X receptors. J Neurophysiol. 2005;94:2195–206.PubMedCrossRefGoogle Scholar
  146. 146.
    Fuxe K, Rivera A, Jacobsen KX, Hoistad M, Leo G, Horvath TL, Staines W, De la Calle A, Agnati LF. Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J Neural Transm. 2005;112:65–76.PubMedCrossRefGoogle Scholar
  147. 147.
    Andrews ZB, Diano S, Horvath TL. Mitochondrial uncoupling proteins in the central nervous system: in support of function and survival. Nat Rev Neurosci. 2005;6(11):829–40.PubMedCrossRefGoogle Scholar
  148. 148.
    Ibrahim N, et al. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology. 2003;144:1331–40.PubMedCrossRefGoogle Scholar
  149. 149.
    Wang R, et al. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes. 2004;53:1959–65.PubMedCrossRefGoogle Scholar
  150. 150.
    Parton LE, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007;449:228–32.PubMedCrossRefGoogle Scholar
  151. 151.
    Fioramonti X, et al. Characterization of glcosensing neuron subpopulations in the arcuate ncleus: integration in neuropeptideY and pro-opio-melanocortin networks? Diabetes. 2007;56:1219–27.PubMedCrossRefGoogle Scholar
  152. 152.
    Dietrich M, Andrews ZB, Horvath TL. Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-dependent mitochondrial adaptation. J Neurosci. 2008;28:10766–71.PubMedCrossRefGoogle Scholar
  153. 153.
    Andrews AB, Horvath TL. Uncoupling Protein 2 regulates lifespan in mice. Am J Physiol Endo Met. 2009;296(4):E621–7. Epub 2009 Jan 13.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Section of Comparative MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations