Skip to main content

Abstract

In Chap. 4, it has been shown that after a single-point trim at room temperature the output frequency of mobility-based oscillators is characterized by a strong temperature dependence, which is larger then ± 30% over the commercial temperature range from − 40 to + 85 ∘ C. However, if an ideal temperature compensation is applied, their inaccuracy is in the order of 1% over the same temperature range. As has been shown in Chap. 2, such inaccuracy is low enough for a large variety of applications, including Wireless Sensor Network (WSN) nodes. This chapter discusses how to keep such level of inaccuracy when going from an ideal to a practical temperature compensation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In package datasheets the junction-to-ambient thermal resistance is also often reported, which for the simple model presented is equal to \({R}_{ja} = {R}_{jc} + {R}_{ja}\).

  2. 2.

    Throughout this chapter, the terms batch-calibration or correction (curvature correction, non-linear correction) refer to the procedure of estimating the average error of a production batch from the measurements of a limited number of samples from that batch, and by adjusting all individual samples in the same manner and by the same amount based on that estimate.

  3. 3.

    With reference to the symbols used in Sect. 5.6.4, for α = 18, the bs = 1 phase is the same as in the case α = 2, while the length in the bs = 0 phase has been assumed equal to \({T}_{1} + (\alpha - 1){T}_{2} = 50\,\mu \textrm{ s} + 17 \cdot 20\,\mu \textrm{ s} = 390\,\mu \textrm{ s}\).

  4. 4.

    A third or fourth-order polynomial would be sufficient to compensate for the third-order non-linearity of V be , which is usually the main residual non-linearity. A sixth-order polynomial is employed in this work to compensate the strong non-linearity at high temperature due to leakage.

  5. 5.

    Note that the order of the polynomials P 7( ⋅) and Q 4( ⋅) is the minimum required for the error due to the non-linearity of the compensation to be negligible compared to the spread among the samples.

  6. 6.

    The up-date rate of N { div} depends on the temperature variations rate in the chosen application.

  7. 7.

    Note that a faster sampling rate is adopted for the temperature sensor with respect to that (2.2 Sa/s) employed for the measurements presented in Sect. 5.7. Though this could result in a larger temperature error, it is allowed because, as shown earlier in this section, the full accuracy of the temperature sensor is not required for the reference’s compensation.

  8. 8.

    The time constant of the exponential settling is in this case τ2 = 180 s due to the lack of induced air flow on the sample and the consequent increase in thermal resistance R pkg .

References

  1. NXP Semiconductor (2000) Integrated circuit packages data handbook. http://www.standardics.nxp.com/packaging/handbook/ Accessed May 2012

  2. Linear Technologies (2006) Thermal resistance table. http://www.linear.com/designtools/packaging/Linear_Technology_Thermal_Resistance_Table.pdf Accessed December 2010

  3. Sofia J (1995) Analysis of thermal transient data with synthesized dynamic models for semiconductor devices. IEEE Trans Comp Packag Manuf Technol A 18(1):39–47. DOI 10.1109/95.370733

    Article  Google Scholar 

  4. Pertijs M, Makinwa K, Huijsing J (2005) A CMOS smart temperature sensor with a 3σ inaccuracy of ± 0.1  ∘ C from − 55 ∘ C to 125 ∘ C. IEEE J Solid State Circ 40(12):2805–2815. DOI 10.1109/JSSC.2005.858476

    Google Scholar 

  5. Aita A, Pertijs M, Makinwa K, Huijsing J (2009) A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ± 0.25 ∘ C (3σ) from − 70 ∘ C to 130 ∘ C. In: ISSCC Dig. Tech. Papers, pp 342–343, 343a. DOI 10.1109/ISSCC.2009.4977448

    Google Scholar 

  6. Duarte D, Geannopoulos G, Mughal U, Wong K, Taylor G (2007) Temperature sensor design in a high volume manufacturing 65nm CMOS digital process. In: Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp 221–224. DOI 10.1109/CICC. 2007.4405718

    Google Scholar 

  7. Lakdawala H, Li Y, Raychowdhury A, Taylor G, Soumyanath K (2009) A 1.05 V 1.6 mW 0.45  ∘ C 3σ-resolution ΣΔ-based temperature sensor with parasitic-resistance compensation in 32 nm CMOS. IEEE J Solid State Circ (12):3621–3630

    Google Scholar 

  8. Floyd MS, Ghiasi S, Keller TW, Rajamani K, Rawson FL, Rudbio JC, Ware MS (2007) System power management support in the IBM POWER6 microprocessor. IBM J Res Develop 51(6):733–746

    Article  Google Scholar 

  9. Saneyoshi E, Nose K, Kajita M, Mizuno M (2008) A 1.1V 35 μm × 35 μm thermal sensor with supply voltage sensitivity of 2 ∘ C/10% -supply for thermal management on the SX-9 supercomputer. In: IEEE Symposium on VLSI Circuits Dig. Tech. Papers, pp 152–153. DOI 10.1109/VLSIC.2008.4585987

    Google Scholar 

  10. Chen P, Chen CC, Peng YH, Wang KM, Wang YS (2010) A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of − 0.4 ∘ C ˜ +0.6 ∘ C over a 0 ∘ C to 90 ∘ C range. IEEE J Solid State Circ 45(3):600–609. DOI 10.1109/JSSC.2010.2040658

    Google Scholar 

  11. Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, Dordrecht

    Google Scholar 

  12. Souri K, Kashmiri M, Makinwa K (2009) A CMOS temperature sensor with an energy-efficient Zoom ADC and an inaccuracy of ± 0.25 ∘ C (3σ) from − 40 ∘ C to 125 ∘ C. In: ISSCC Dig. Tech. Papers, pp 310–311, 311a. DOI 10.1109/ISSCC.2009.4977448

    Google Scholar 

  13. Krummenacher P, Oguey H (1989) Smart temperature sensor in CMOS technology. Sensor Actuator A Phys 22(1–3):636–638. DOI 10.1016/0924-4247(89)80048-2

    Article  Google Scholar 

  14. Kim JP, Yang W, Tan HY (2003) A low-power 256-Mb SDRAM with an on-chip thermometer and biased reference line sensing scheme. IEEE J Solid State Circ 38(2):329–337. DOI 10.1109/JSSC.2002.807170

    Article  Google Scholar 

  15. Szajda K, Sodini C, Bowman H (1996) A low noise, high resolution silicon temperature sensor. IEEE J Solid State Circ 31(9):1308–1313. DOI 10.1109/4.535415

    Article  Google Scholar 

  16. Creemer J, Fruett F, Meijer G, French P (2001) The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sensor J 1(2):98–108. DOI 10.1109/JSEN.2001.936927

    Article  Google Scholar 

  17. Meijer G, Gelder RV, Nooder V, Drecht JV, Kerkvliet H (1989) A three-terminal intergrated temperature transducer with microcomputer interfacing. Sensor Actuator 18(2):195–206. DOI 10.1016/0250-6874(89)87018-0

    Article  Google Scholar 

  18. Kashmiri SM, Pertijs MAP, Makinwa KAA (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ± 0. 1% from − 55 ∘ C to 125 ∘ C. IEEE J Solid State Circ 45(12):2510–2520

    Google Scholar 

  19. Norsworthy S, Schreier R, Temes G (eds) (1996) Delta-sigma data converters: theory, design, and simulation. Wiley, Hoboken

    Google Scholar 

  20. Meijer G, Wang G, Fruett F (2001) Temperature sensors and voltage references implemented in CMOS technology. IEEE Sensor J 1(3):225–234. DOI 10.1109/JSEN. 2001.954835

    Article  Google Scholar 

  21. Meijer GC (1986) Thermal sensors based on transistors. Sensors Actuators 10(1–2):103–125. DOI 10.1016/0250-6874(86)80037-3

    Google Scholar 

  22. Sebastiano F, Breems L, Makinwa K, Drago S, Leenaerts D, Nauta B (2010a) A 1.2-V 10-μW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2 ∘ C (3σ) from − 70 ∘ C to 125 ∘ C. IEEE J Solid State Circ 45(12):2591–2601

    Google Scholar 

  23. Aita A, Makinwa K (2007) Low-power operation of a precision CMOS temperature sensor based on substrate PNPs. In: IEEE Sensors, pp 856–859. DOI 10.1109/ ICSENS.2007.4388536

    Google Scholar 

  24. You F, Embabi H, Duque-Carrillo J, Sanchez-Sinencio E (1997) An improved tail current source for low voltage applications. IEEE J Solid State Circ 32(8):1173–1180. DOI 10.1109/4.604073

    Article  Google Scholar 

  25. Baker RJ, Li HW, Boyce DE (1997) CMOS circuit design, layout, and simulations. IEEE, New York, p 637

    Google Scholar 

  26. Pouydebasque A, Charbuillet C, Gwoziecki R, Skotnicki T (2007) Refinement of the subthreshold slope modeling for advanced bulk CMOS devices. IEEE Trans Electron Dev 54(10):2723–2729. DOI 10.1109/TED.2007.904483

    Article  Google Scholar 

  27. Enz C, Temes G (1996) Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE 84(11):1584–1614

    Article  Google Scholar 

  28. Sebastiano F, Breems L, Makinwa K, Drago S, Leenaerts D, Nauta B (2011) A 65-nm CMOS temperature-compensated mobility-based frequency reference for wireless sensor networks. IEEE J Solid State Circ, 46(7):1544–1552

    Article  Google Scholar 

  29. De Smedt V, De Wit P, Vereecken W, Steyaert M (2009) A 66 μW 86 ppm/ ∘ C fully-integrated 6 MHz wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid State Circ 44(7):1990–2001. DOI 10.1109/JSSC.2009.2021914

    Article  Google Scholar 

  30. Lee J, Cho S (2009) A 10MHz 80μW 67 ppm/ ∘ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS. In: 2009 Symposium on VLSI Circuits Dig. Tech. Papers, pp 226–227

    Google Scholar 

  31. Ueno K, Asai T, Amemiya Y (2009) A 10MHz 80μW 67 ppm/ ∘ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS. In: Proc. ESSCIRC, pp 226–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sebastiano, F., Breems, L.J., Makinwa, K.A.A. (2013). Temperature Compensation. In: Mobility-based Time References for Wireless Sensor Networks. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3483-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3483-2_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3482-5

  • Online ISBN: 978-1-4614-3483-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics