Skip to main content

Fully Integrated Time References

  • Chapter
  • First Online:
Mobility-based Time References for Wireless Sensor Networks

Abstract

Measuring the time interval between two events requires the choice of a repetitive and regular phenomenon, such as the oscillation of a pendulum, and then counting how many times this phenomenon takes place between the two events. The science of timekeeping has evolved through the centuries by basically adopting more and more precise and reliable periodic phenomena to keep track of time. From the first attempts using evident astronomical events, such as the motion of the sun and the moon, chronometry evolved by employing periodic phenomena in man-made devices, such as sand motion in hourglasses, oscillations in pendulums, balance wheel rotations in mechanical clocks, electromechanical vibrations in quartz crystal oscillators and absorption or emission of radiations in atomic clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    x(t) is obtained using the Fourier series expansion of m(t), i.e. \(A(t) = S(t)\sqrt{{a}_{1 }^{2 } + {b}_{1 }^{2}}\), \(\phi (t) + \theta (t) = 2\pi {f}_{0}\epsilon (t) +\arcsin \frac{{a}_{1}} {\sqrt{{a}_{1 }^{2 }+{b}_{1 }^{2}}}\), where \({a}_{1} = \frac{2} {T}{\int \nolimits \nolimits }_{0}^{{T}_{0}}m(t)\cos (2\pi {f}_{0}t)\,\textrm{ d}t\), \({b}_{1} = \frac{2} {T}{\int \nolimits \nolimits }_{0}^{{T}_{0}}m(t)\sin (2\pi {f}_{0}t)\,\textrm{ d}t\).

  2. 2.

    Note that phase noise can in general also not be a stationary process, since its statistical property changes with time, such as, for example, its variance that can increase with time. The relation between its standard deviation and its PSD is then not well defined. However, defining jitter as a stationary process with parameter Ï„ justifies the calculations presented in this section, even if not all of them are not formally correct, including the integration of S Ï•(f) to compute the jitter.

  3. 3.

    It can be proven, integrating by parts, that \({\int \nolimits \nolimits }_{0}^{+\infty }\frac{{\sin }^{2}x} {{x}^{2}} \textrm{ d}x ={ \int \nolimits \nolimits }_{0}^{+\infty }\frac{\sin x} {x}\textrm{ d}x\); the latter term can be proven to be equal to π ∕ 2 [7].

  4. 4.

    The linearity of passive components describes the variation of the component properties, i.e. resistance or capacitance, for a change in the voltage applied to the component. A high linearity is sign of robustness to voltage variation and consequently low sensitivity to supply voltage variations.

  5. 5.

    Reference capacitors can be constructed whose capacitance is only dependent on the permittivity and one dimension, such as the Thompson–Lampard capacitor [20, 21]. However, their implementation in an integrated circuit is unpractical.

  6. 6.

    This condition can be fulfilled by simply embedding in the oscillator tank all reactive components of the active circuit, such as the parasitic capacitances.

  7. 7.

    In order to fulfill this condition, the parasitic capacitances introduced by the active circuit must be minimized; those parasitic can be due to junction capacitances and MOS capacitances, which have different temperature coefficient than the tank capacitor and consequently can not be trimmed out by a temperature compensation.

  8. 8.

    A more efficient circuit could be employed by adding a cross-coupled pMOS pair in parallel with the tank and re-using the same bias current of the nMOS pair. This would result in a factor 2 for the lower bound for the bias current but it would not radically change the conclusions.

  9. 9.

    State-of-the-art CMOS temperature sensors can achieve an inaccuracy of the order of 0.1 ∘ C, as shown in [39] and as will be further discussed in Chap. 5.

References

  1. Jespersen J, Fitz-Randolph J (1977) From sundials to atomic clocks: understanding time and frequency. Dover Publications, Inc., New York

    Google Scholar 

  2. Lee TH (2008) It’s about time: a brief chronology of chronometry. IEEE Solid State Circ, 13(3):42–49

    Google Scholar 

  3. IEEE (1999) IEEE standard definitions of physical quantities for fundamental frequency and time metrology – random instabilities, Std. 1139–1999

    Google Scholar 

  4. Razavi B (1998) RF microelectronics. Prentice-Hall, NJ

    Google Scholar 

  5. ITU-T (1997) Definitions and terminology for synchronization networks, Std. G810

    Google Scholar 

  6. Gierkink SL (1999) Control linearuty and jitter of relaxation oscillators. PhD thesis, University of Twente, http://icd.el.utwente.nl/research/index.php?id=12

  7. Courant R, John F (1965) Introduction to calculus and analysis, vol 1. Wiley, NJ, pp 589–591

    Google Scholar 

  8. Demir A (2006) Computing timing jitter from phase noise spectra for oscillators and phase-locked loops with white and 1/f noise. IEEE Trans Circ Syst I 53(9):1869–1884. DOI 10.1109/TCSI.2006.881184

    Article  Google Scholar 

  9. Liu C, McNeill J (2004) Jitter in oscillators with 1/f noise sources. Proc ISCAS 1:I–773–6. DOI 10.1109/ISCAS.2004.1328309

    Google Scholar 

  10. Gray PR, Hurst PJ, Lewis SH, Meyer RG (2001) Analysis and design of analog integrated circuits, 4th edn. Wiley, NJ

    Google Scholar 

  11. Hastings A (2005) The art of analog layout. Prentice Hall, NJ

    Google Scholar 

  12. Ueda N, Nishiyama E, Aota H, Watanabe H (2009) Evaluation of packaging-induced performance change for small-scale analog IC. IEEE Trans Semicond Manuf 22(1):103–109. DOI 10.1109/TSM.2008.2010739

    Article  Google Scholar 

  13. Abesingha B, Rincon-Mora G, Briggs D (2002) Voltage shift in plastic-packaged bandgap references. IEEE Trans Circ Syst I 49(10):681–685. DOI 10.1109/TCSII. 2002.806734

    Article  Google Scholar 

  14. Ali H (1997) Stress-induced parametric shift in plastic packaged devices. IEEE Trans Comp Packag Manuf Technol B 20(4):458–462

    Article  Google Scholar 

  15. De Smedt V, De Wit P, Vereecken W, Steyaert M (2009) A 66 μW 86 ppm/ ∘ C fully-integrated 6 MHz wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid State Circ 44(7):1990–2001. DOI 10.1109/JSSC.2009.2021914

    Article  Google Scholar 

  16. Lee J, Cho S (2009) A 10MHz 80μW 67 ppm/ ∘ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS. In: 2009 Symposium on VLSI Circuits Dig. Tech. Papers, pp 226–227

    Google Scholar 

  17. Ueno K, Asai T, Amemiya Y (2009) A 10MHz 80μW 67 ppm/ ∘ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS. In: Proc. ESSCIRC, pp 226–227

    Google Scholar 

  18. Pertijs MA, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, Dordrecht

    Google Scholar 

  19. Lane WA, TWrixon G (1989) The design of thin-film polysilicon resistors for analog IC applications. IEEE Trans Electron Dev 36(4):738–744. DOI 10.1109/16.22479

    Google Scholar 

  20. Lampard D (1957) A new theorem in electrostatics with applications to calculable standards of capacitance. Proc IEE C Monogr 104(6):271–280. DOI 10.1049/pi-c.1957. 0032

    Article  Google Scholar 

  21. Thompson A (1959) The cylindrical cross-capacitor as a calculable standard. Proc IEE B Electron Comm Eng 106(27):307–310. DOI 10.1049/pi-b-2.1959.0262

    Google Scholar 

  22. McCreary J (1981) Matching properties, and voltage and temperature dependence of mos capacitors. IEEE J Solid State Circ 16(6):608–616

    Article  Google Scholar 

  23. St Onge S, Franz S, Puttlitz A, Kalinoski A, Johnson B, El-Kareh B (1992) Design of precision capacitors for analog applications. IEEE Trans Comp Hybrids Manuf Technol 15(6): 1064–1071. DOI 10.1109/33.206932

    Article  Google Scholar 

  24. Svelto F, Erratico P, Manzini S, Castello R (1999) A metal-oxide-semiconductor varactor. IEEE Electron Dev Lett 20(4):164–166. DOI 10.1109/55.753754

    Article  Google Scholar 

  25. Chen KM, Huang GW, Wang SC, Yeh WK, Fang YK, Yang FL (2004) Characterization and modeling of SOI varactors at various temperatures. IEEE Trans Electron Dev 51(3):427–433. DOI 10.1109/TED.2003.822585

    Article  Google Scholar 

  26. Sedra AS, Smith KC (1998) Microelectronics circuits, 4th edn. Oxford University Press, New York

    Google Scholar 

  27. Navid R, Lee T, Dutton R (2005) Minimum achievable phase noise of RC oscillators. IEEE J Solid State Circ 40(3):630–637. DOI 10.1109/JSSC.2005.843591

    Article  Google Scholar 

  28. Tokunaga Y, Sakiyama S, Matsumoto A, Dosho S (2010) An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J Solid State Circ 45(6):1150–1158

    Article  Google Scholar 

  29. McCorquodale MS, O’Day JD, Pernia SM, Carichner GA, Kubba S, Brown RB (2007) A monolithic and self-referenced RF LC clock generator compliant with USB 2.0. IEEE J Solid State Circ 42(2):385–399. DOI 10.1109/JSSC.2006.883337

    Google Scholar 

  30. McCorquodale MS, Pernia SM, O’Day JD, Carichner G, Marsman E, Nguyen N, Kubba S, Nguyen S, Kuhn J, Brown RB (2008) A 0.5-to-480 MHz self-referenced CMOS clock generator with 90 ppm total frequency error and spread-spectrum capability. In: ISSCC Dig. of Tech. Papers, pp 524–525

    Google Scholar 

  31. McCorquodale M, Carichner G, O’Day J, Pernia S, Kubba S, Marsman E, Kuhn J, Brown R (2009) A 25-MHz self-referenced solid-state frequency source suitable for XO-replacement. IEEE Trans Circ Syst I 56(5):943–956. DOI 10.1109/TCSI.2009. 2016133

    Article  MathSciNet  Google Scholar 

  32. McCorquodale M, Gupta B, Armstrong W, Beaudouin R, Carichner G, Chaudhari P, Fayyaz N, Gaskin N, Kuhn J, Linebarger D, Marsman E, O’Day J, Pernia S, Senderowicz D (2010) A silicon die as a frequency source. In: IEEE International Frequency Control Symp., pp 103–108. DOI 10.1109/FREQ.2010.5556366

    Google Scholar 

  33. Groszkowski J (1964) Frequency of self-oscillations. Pergamon Press, Oxford

    Google Scholar 

  34. Groves R, Harame DL, Jadus D (1997) Temperature dependence of Q and inductance in spiral inductors fabricated in a silicon-germanium/BiCMOS technology. IEEE J Solid State Circ 32(9):1455–1459

    Article  Google Scholar 

  35. Pouydebasque A, Charbuillet C, Gwoziecki R, Skotnicki T (2007) Refinement of the subthreshold slope modelling for advanced bulk CMOS devices. IEEE Trans Electron Dev 54(10):2723–2729

    Article  Google Scholar 

  36. Lee TH (2004) The design of CMOS Radio-frequency integrated circuits, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  37. Makinwa K, Snoeij M (2006) A CMOS temperature-to-frequency converter with inaccuracy of less than 0.5 ∘ C (3σ) from − 40 ∘ C to 105 ∘ C. IEEE J Solid State Circ 41(12):2992–2997

    Google Scholar 

  38. Kashmiri SM, Pertijs MAP, Makinwa KAA (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ± 0. 1% from − 55 ∘ C to 125 ∘ C. IEEE J Solid State Circ 45(12):2510–2520

    Google Scholar 

  39. Makinwa KAA (2010) Smart temperature sensors in standard CMOS. In: Proc. Eurosensors XXIV, pp 930–939

    Google Scholar 

  40. van Vroonhoven C, d’Aquino D, Makinwa K (2010) A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ± 0.2 ∘ C (3σ) from − 55 ∘ C to 125 ∘ C. In: ISSCC Dig. of Tech. Papers, pp 314–315. DOI 10.1109/ISSCC.2010.5433900

    Google Scholar 

  41. Kashmiri S, Xia S, Makinwa K (2009) A temperature-to-digital converter based on an optimized electrothermal filter. IEEE J Solid State Circ 44(7):2026–2035. DOI 10.1109/JSSC.2009.2020248

    Article  Google Scholar 

  42. Kashmiri SM, Souri K, Makinwa KAA (2011) A scaled thermal-diffusivity-based frequency reference in 0.16μm CMOS. In: Proc. ESSCIRC, pp 503–506

    Google Scholar 

  43. Kashmiri SM, Pertijs MAP, Makinwa KAA (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ± 0. 1% from − 55 ∘ C to 125 ∘ C. In: ISSCC Dig. of Tech. Papers, pp 74–75

    Google Scholar 

  44. Sundaresan K, Allen P, Ayazi F (2006) Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J Solid State Circ 41(2):433–442

    Article  Google Scholar 

  45. Paavola M, Laiho M, Saukoski M, Halonen K (2006) A 3 μW, 2 MHz CMOS frequency reference for capacitive sensor applications. In: Proc. ISCAS, pp 4391–4394

    Google Scholar 

  46. Ge G, Zhang C, Hoogzaad G, Makinwa K (2010) A single-trim CMOS bandgap reference with a 3σ inaccuracy of ± 0.15% from − 40 ∘ C to 125 ∘ C. In: ISSCC Dig. of Tech. Papers, pp 78–79. DOI 10.1109/ISSCC.2010.5434040

    Google Scholar 

  47. Blauschild R (1994) An integrated time reference. ISSCC Dig. of Tech. Papers, pp 56–57

    Google Scholar 

  48. Jiang CL (1988) Temperature compensated monolithic delay circuit, US Patent 4843265

    Google Scholar 

  49. Tsividis Y (2003) Operation and modeling of the MOS transistor, 2nd edn. Oxford University Press, New York

    Google Scholar 

  50. Nguyen CC (2007) MEMS technology for timing and frequency control. IEEE Trans Ultrason Ferroelect Freq Contr 54(2):251–270. DOI 10.1109/TUFFC.2007.240

    Article  Google Scholar 

  51. Ruffieux D, Krummenacher F, Pezous A, Spinola-Durante G (2010) Silicon resonator based 3.2 μW real time clock with 10 ppm frequency accuracy. IEEE J Solid State Circ 45(1):224–234. DOI 10.1109/JSSC.2009.2034434

    Google Scholar 

  52. Perrott M, Pamarti S, Hoffman E, Lee F, Mukherjee S, Lee C, Tsinker V, Perumal S, Soto B, Arumugam N, Garlepp B (2010) A low area, switched-resistor based fractional-n synthesizer applied to a MEMS-based programmable oscillator. IEEE J Solid State Circ 45(12):2566–2581. DOI 10.1109/JSSC.2010.2076570

    Article  Google Scholar 

  53. SiTime Corporation (2009) SiT8003XT datasheet, Sunnyvale, CA. http://www.sitime.com. Accessed 23 Aug 2009

  54. Discera Inc. (2009) DSC1018 datasheet, San Jose, CA. http://www.discera.com. Accessed 23 Aug 2009

  55. Shyu YS, Wu JC (1999) A process and temperature compensated ring oscillator. In: Proc. Asia-Pacific Conference on ASICs, pp 283–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sebastiano, F., Breems, L.J., Makinwa, K.A.A. (2013). Fully Integrated Time References. In: Mobility-based Time References for Wireless Sensor Networks. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3483-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3483-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3482-5

  • Online ISBN: 978-1-4614-3483-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics