Skip to main content

A Look Backwards at Environmental Risk Assessment: An Approach to Reconstructing Ecological Exposures

  • Chapter
  • First Online:
  • 1343 Accesses

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 4))

Abstract

The primary goal for environmental protection is to eliminate or minimize the exposure of humans and ecosystems to potential contaminants. With the number of environmental contaminants increasing annually, more than 2,000 new chemicals are manufactured or imported each year for use in the USA, understanding the sources of contaminants, the movement of contaminants through environmental media, and the contact of contaminants with humans and ecosystems is critical to advancing environmental protection in the USA. A shift in emphasis from detection of chemical exposure to reconstruction of exposure scenarios will enhance the ability to assess the effectiveness of current environmental regulations and to improve environmental risk assessment for both humans and ecosystems. Exposure reconstruction is a concept that can guide this shift in research focus. Exposure reconstruction, as defined in this chapter, is the characterization of exposures, environmental concentrations, and/or sources from internal biological measurements that are used to inform environmental decision-making (Fig. 1).

This document has been reviewed in accordance with US Environmental Protection Agency policy and approved for publication. Approval does not signify that the contents necessarily reflect the views or policies of the Agency nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Designation of macromolecular products: vtg, transcribed vitellogenin gene product (mRNA) and Vtg, circulating vitellogenin protein, follows the Zebrafish Nomenclature Guidelines, based on Trends in Genetics Genetic Nomenclature Guide (1998), found at http://zfin.org/zf_info/nomen.html#1.

References

  1. Aylward LL, Brunet RC, Starr TB, Carrier G, Delzell E, Cheng H, Beall C (2005) Exposure reconstruction for the TCDD-exposed NIOSH cohort using a concentration- and age-dependent model of elimination. Risk Anal 25:945–956

    Article  Google Scholar 

  2. Bauchinger M (1998) Retrospective dose reconstruction of human radiation exposure by FISH/chromosome painting. Mutat Res 404:89–96

    Article  CAS  Google Scholar 

  3. Roy A, Weisel CP, Gallo MA, Georgopoulos PG (1996) Studies of multiroute exposure/dose reconstruction using physiologically based pharmacokinetic models. Toxicol Ind Health 12:153–163

    CAS  Google Scholar 

  4. Williams PR, Paustenbach DJ (2003) Reconstruction of benzene exposure for the Pliofilm cohort (1936-1976) using Monte Carlo techniques. J Toxicol Environ Health A 66:677–781

    Article  CAS  Google Scholar 

  5. CDC (2003) Second national report on human exposure to environmental chemicals. US Department of Health and Human Services, Center for Disease Control and Prevention, Atlanta, GA

    Google Scholar 

  6. CDC (2005) Third national report on human exposure to environmental chemicals. US Department of Health and Human Services, Center for Disease Control and Prevention, Atlanta, GA

    Google Scholar 

  7. USEPA (2005) National lake fish tissue study. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  8. NRC (2006) Human biomonitoring for environmental chemicals. National Research Council of the National Academies, The National Academies Press, Washington, DC

    Google Scholar 

  9. Tan YM, Liao KH, Conolly RB, Blount BC, Mason AM, Clewell HJ (2006) Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform. J Toxicol Environ Health A 69:1727–1756

    Article  CAS  Google Scholar 

  10. Lattier DL, Gordon DA, Burks DJ, Toth GP (2001) Vitellogenin gene transcription: a relative quantitative exposure indicator of environmental estrogens. Environ Toxicol Chem 20:1979–1985

    Article  CAS  Google Scholar 

  11. Korte JJ, Kahl MD, Jensen KM, Pasha MS, Parks LG, LeBlanc GA, Ankley GT (2000) Fathead minnow vitellogenin: Complementary DNA sequence and messenger RNA and protein expression after 17 beta-estradiol treatment. Environ Toxicol Chem 19:972–981

    Article  CAS  Google Scholar 

  12. Schmid T, Gonzalez-Valero J, Rufli H, Dietrich DR (2002) Determination of vitellogenin kinetics in male fathead minnows (Pimephales promelas). Toxicol Lett 131:65–74

    Article  CAS  Google Scholar 

  13. Paules R (2003) Phenotypic anchoring: linking cause and effect. Environ Health Perspect 111:A338–A339

    Article  Google Scholar 

  14. Moggs JG, Tinwell H, Spurway T, Chang HS, Pate I, Lim FL, Moore DJ, Soames A, Stuckey R, Currie R, Zhu T, Kimber I, Ashby J, Orphanides G (2004) Phenotypic anchoring of gene expression changes during estrogen-induced uterine growth. Environ Health Perspect 112:1589–1606

    Article  CAS  Google Scholar 

  15. Lattier DL, Reddy TV, Gordon DA, Lazorchak TM, Smith ME, Williams DE, Wiechman B, Flick RW, Miracle AL, Toth GP (2002) 17 α-ethynylestradiol-induced vitellogenin gene transcription quantified in livers of adult males, larvae, and gills of fathead minnows (Pimephales promelas). Environ Toxicol Chem 21:2385–2393

    CAS  Google Scholar 

  16. Biales AD, Bencic DC, Lazorchak JL, Lattier DL (2007) A quantitative real-time polymerase chain reaction method for the analysis of vitellogenin transcripts in model and nonmodel fish species. Environ Toxicol Chem 26:2679–2686

    Article  CAS  Google Scholar 

  17. Arukwe A, Goksoyr A (2003) Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp Hepatol 2:4

    Article  Google Scholar 

  18. Sumpter JP, Jobling S (1995) Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect 103(suppl 7):173–178

    Article  CAS  Google Scholar 

  19. Ankley GT, Bencic DC, Breen MS, Collette TW, Conolly RB, Denslow ND, Edwards SW, Ekman DR, Garcia-Reyero N, Jensen KM, Lazorchak JM, Martinovic D, Miller DH, Perkins EJ, Orlando EF, Villeneuve DL, Wang RL, Watanabe KH (2009) Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action. Aquat Toxicol 92:168–178

    Article  CAS  Google Scholar 

  20. Herman RL, Kincaid HL (1988) Pathological effects of orally administered estradiol to rainbow trout. Aquaculture 72:165–172

    Article  CAS  Google Scholar 

  21. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci USA 104:8897–8901

    Article  CAS  Google Scholar 

  22. Schwaiger J, Spieser OH, Bauer C, Ferling H, Mallow U, Kalbfus W, Negele RD (2000) Chronic toxicity of nonylphenol and ethinylestradiol: haematological and histopathological effects in juvenile Common carp (Cyprinus carpio). Aquat Toxicol 51:69–78

    Article  CAS  Google Scholar 

  23. Hutchinson TH, Barrett S, Buzby M, Constable D, Hartmann A, Hayes E, Huggett D, Laenge R, Lillicrap AD, Straub JO, Thompson RS (2003) A strategy to reduce the numbers of fish used in acute ecotoxicity testing of pharmaceuticals. Environ Toxicol Chem 22:3031–3036

    Article  CAS  Google Scholar 

  24. Panter GH, Hutchinson TH, Lange R, Lye CM, Sumpter JP, Zerulla M, Tyler CR (2002) Utility of a juvenile fathead minnow screening assay for detecting (anti-)estrogenic substances. Environ Toxicol Chem 21:319–326

    Article  CAS  Google Scholar 

  25. Scholz S, Mayer I (2008) Molecular biomarkers of endocrine disruption in small model fish. Mol Cell Endocrinol 293:57–70

    Article  CAS  Google Scholar 

  26. Gilbert SF (2002) The genome in its ecological context: philosophical perspectives on interspecies epigenesis. Ann N Y Acad Sci 981:202–218

    Article  Google Scholar 

  27. Nijhout HF (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5:9–18

    Article  Google Scholar 

  28. Petersen DG, Sundbäck K, Larson F, Dahllöf I (2009) Pyrene toxicity is affected by the nutrient status of a marine sediment community: implications for risk assessment. Aquat Toxicol 95(1):37–43

    Article  CAS  Google Scholar 

  29. Persoone G, Van de Vel A, Van Steertegem M, De Nayer B (1989) Predictive value of laboratory tests with aquatic invertebrates: influence of experimental conditions. Aquat Toxicol 14:149–167

    Article  CAS  Google Scholar 

  30. Gordon DA, Toth GP, Graham DW, Lazorchak JM, Reddy TV, Knapp CW, deNoyelles J, Frank CS, Lattier DL (2006) Effects of eutrophication on vitellogenin gene expression in male fathead minnows (Pimephales promelas) exposed to 17α-ethynylestradiol in field mesocosms. Environ Pollut 142:559–566

    Article  CAS  Google Scholar 

  31. Barbash JE, Thelin GP, Kolpin DW, Gilliom RJ (2001) Major herbicides in ground water: results from the National Water-Quality Assessment. J Environ Qual 30:831–845

    Article  CAS  Google Scholar 

  32. Spanò L, Tyler CR, Rv A, Devos P, Mandiki SNM, Silvestre F, Thomé J-P, Kestemont P (2004) Effects of atrazine on sex steroid dynamics, plasma vitellogenin concentration and gonad development in adult goldfish (Carassius auratus). Aquat Toxicol 66:369–379

    Article  Google Scholar 

  33. Fan W, Yanase T, Morinaga H, Gondo S, Okabe T, Nomura M, Komatsu T, Morohashi K, Hayes TB, Takayanagi R, Nawata H (2007) Atrazine-induced aromatase expression is SF-1 dependent: implications for endocrine disruption in wildlife and reproductive cancers in humans. Environ Health Perspect 115:720–727

    Article  Google Scholar 

  34. Coors A, Vanoverbeke J, De Bie T, De Meester L (2009) Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna. Aquat Toxicol 95(1):71–79

    Article  CAS  Google Scholar 

  35. Calabrese EJ, Baldwin LA (2003) Toxicology rethinks its central belief. Nature 421:691–692

    Article  CAS  Google Scholar 

  36. Weltje L, vom Saal FS, Oehlmann J (2005) Reproductive stimulation by low doses of xenoestrogens contrasts with the view of hormesis as an adaptive response. Hum Exp Toxicol 24:431–437

    Article  CAS  Google Scholar 

  37. Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50

    Article  CAS  Google Scholar 

  38. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  Google Scholar 

  39. Dolinoy DC (2007) Epigenetic gene regulation: early environmental exposures. Pharmacogenomics 8:5–10

    Article  CAS  Google Scholar 

  40. Dolinoy DC (2008) The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 66(suppl 1):S7–S11

    Article  Google Scholar 

  41. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874

    Article  CAS  Google Scholar 

  42. Tost J (2009) DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Methods Mol Biol 507:3–20

    Article  CAS  Google Scholar 

  43. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, Holsboer F, Wotjak CT, Almeida OF, Spengler D (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12(12):1559–1566

    Article  CAS  Google Scholar 

  44. Cooney CA (2007) Epigenetics–DNA-based mirror of our environment? Dis Markers 23:121–137

    CAS  Google Scholar 

  45. Tabb MM, Blumberg B (2006) New modes of action for endocrine-disrupting chemicals. Mol Endocrinol 20:475–482

    Article  CAS  Google Scholar 

  46. Saluz HP, Jiricny J, Jost JP (1986) Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA demethylation of the overlapping estradiol/glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis. Proc Natl Acad Sci U S A 83:7167–7171

    Article  CAS  Google Scholar 

  47. Reamon-Buettner SM, Mutschler V, Borlak J (2008) The next innovation cycle in toxicogenomics: environmental epigenetics. Mutat Res 659:158–165

    Article  CAS  Google Scholar 

  48. Kovalchuk O (2008) Epigenetic research sheds new light on the nature of interactions between organisms and their environment. Environ Mol Mutagen 49:1–3

    Article  CAS  Google Scholar 

  49. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  Google Scholar 

  50. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24

    Article  CAS  Google Scholar 

  51. Valeri N, Vannini I, Fanini F, Calore F, Adair B, Fabbri M (2009) Epigenetics, miRNAs, and human cancer: a new chapter in human gene regulation. Mamm Genome 20(9–10):573–580

    Article  CAS  Google Scholar 

  52. Hudder A, Novak RF (2008) miRNAs: effectors of environmental influences on gene expression and disease. Toxicol Sci 103:228–240

    Article  CAS  Google Scholar 

  53. Timme-Laragy AR, Meyer JN, Waterland RA, Di Giulio RT (2005) Analysis of CpG methylation in the killifish CYP1A promoter. Comp Biochem Physiol C Toxicol Pharmacol 141:406–411

    Article  Google Scholar 

  54. Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30–38

    Article  Google Scholar 

  55. Dickhut RM, Deshpande AD, Cincinelli A, Cochran MA, Corsolini S, Brill RW, Secor DH, Graves JE (2009) Atlantic bluefin tuna (Thunnus thynnus) population dynamics delineated by organochlorine tracers. Environ Sci Technol 43:8522–8527

    Article  CAS  Google Scholar 

  56. Lake JL, Ryba SA, Serbst JR, Libby AD (2006) Mercury in fish scales as an assessment method for predicting muscle tissue mercury concentrations in largemouth bass. Arch Environ Contam Toxicol 50:539–544

    Article  CAS  Google Scholar 

  57. Georgopoulos PG, Sasso AF, Isukapalli SS, Lioy PJ, Vallero DA, Okino M, Reiter L (2009) Reconstructing population exposures to environmental chemicals from biomarkers: challenges and opportunities. J Expo Sci Environ Epidemiol 19:149–171

    Article  CAS  Google Scholar 

  58. Chamberlin TC (1965) The method of multiple working hypotheses: with this method the dangers of parental affection for a favorite theory can be circumvented. Science 148:754–759

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lattier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lattier, D., Lazorchak, J.M., Fulk, F., Kostich, M. (2012). A Look Backwards at Environmental Risk Assessment: An Approach to Reconstructing Ecological Exposures. In: Brooks, B., Huggett, D. (eds) Human Pharmaceuticals in the Environment. Emerging Topics in Ecotoxicology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3473-3_6

Download citation

Publish with us

Policies and ethics