Skip to main content

Post-Amplifier

  • Chapter
  • First Online:
  • 6953 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

In this chapter, theoretical fundamentals regarding the amplifier core, such as multistage design and broadband techniques, and auxiliary loops, such as constant settling time for AGC and offset compensation, are presented. The proposed AGC amplifier is implemented in a low-cost CMOS technology, and its design is explained step-by-step. Finally, the verification of such a circuit is included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alegre JP, Celma S, Calvo B, García del Pozo JM (2008) Design of a novel envelope detector for fast-settling circuits. IEEE Trans Instrum Meas 57:4–9

    Article  Google Scholar 

  • Alegre JP, Celma S, Calvo B (2011) Automatic gain control: techniques and architectures for RF receivers. Analog circuits and signal processing. Springer, Berlin

    Google Scholar 

  • Atef M, Swoboda R, Zimmermann H (2008) An automatic gain control front-end optical receiver for multi-level data transmission. In: Proceedings of the 26th Norchip conference, pp 57–60

    Google Scholar 

  • Aznar F, Celma S, Calvo B, Digón D (2008a) Inductorless AGC amplifier for 10GBase-LX4 ethernet in 0.18 μm CMOS. Electron Lett 44(6):409–410

    Article  Google Scholar 

  • Aznar F, Celma S, Calvo B, Digón D (2008) A fully integrated inductorless agc amplifier for optical gigabit ethernet in 0.18 μm CMOS. In: Proceedings of the 2008 IEEE international symposium on industrial electronics, pp 1662–1667

    Google Scholar 

  • Aznar F, Celma S, Calvo B, Aldea C (2009) A 0.18 μm CMOS inductorless AGC amplifier with 50 dB input dynamic range for 10GBase-LX4 ethernet, VLSI circuits and systems IV, Proceedings of SPIE, vol 7363, 73630T-1

    Google Scholar 

  • Aznar F, Celma S, Calvo B (2011) A 0.18 μm CMOS linear-in-dB AGC post-amplifier for optical communications. Microelectron Reliab 51:959–964

    Article  Google Scholar 

  • Calvo B, Celma S, Sanz MT, Alegre JP, Aznar F (2008) Low-voltage linearly tunable CMOS transconductor with common-mode feedforward. IEEE Trans Circuits Syst I 55(3):715–721

    Article  MathSciNet  Google Scholar 

  • Crain EA, Perrot MH (2006) A 3.125 Gb/s limit amplifier in CMOS with 42 dB gain and 1 μs offset compensation. IEEE J Solid-State Circuits 41(2):443–451

    Article  Google Scholar 

  • Gajski DD (1997) Principles of digital design. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • García del Pozo JM (2010) Design of CMOS analog front-ends for broadband optical receiver. PhD thesis, University of Zaragoza, Spain

    Google Scholar 

  • Green D (1983) Global stability analysis of automatic gain control circuits. IEEE Trans Circuits Syst 30(2):78–83

    Article  MATH  Google Scholar 

  • Hermans C, Steyaert M (2005) A 3.5 Gbit/s post-amplifier in 0.18 μm CMOS. In: IEEE European Solid State Circuits Conference 431–434

    Google Scholar 

  • Hermans C, Steyaert M (2007) Broadband opto-electrical receivers in standard CMOS, analog circuits and signal processing. Springer, Berlin

    Google Scholar 

  • Israelsohn J (2002) Gain control. EDN 38–46

    Google Scholar 

  • Jindal RP (1987) Gigahertz-band high-gain low-noise AGC amplifiers in fine-line NMOS. IEEE J Solid-State Circuits SC-22(4):512–521

    Article  Google Scholar 

  • Khoury JM (1998) On the design of constant settling time AGC circuits. IEEE Trans Circuits Syst II, Analog Digital Signal Process 45(3):283–294

    Article  Google Scholar 

  • Lin C-W, Liu Y-Z, Hsu KYJ, (2004) A low distortion and fast settling time automatic gain control amplifier in CMOS technology. In: Proceedings of the 2004 IEEE international symposium on circuits and systems, vol. I, pp 541–544

    Google Scholar 

  • Maxim Integrated Products (2008) NRZ bandwidth—LF cutoff and baseline wander, application note HFAN-09.0.4, rev. 1

    Google Scholar 

  • Miller JM (1920) Dependence of the input impedance of a three-electrode vacuum tube upon the load in the plate circuit. Scientific Papers of the Bureau of Standards, vol 15, No 351, pp 367–385 Available on-line at: http://web.mit.edu/klund/www/papers/jmiller.pdf

  • Muller P, Leblebici Y (2007) CMOS multichannel single-chip receivers for multi-gigabit optical data communications analog circuits and signal processing. Springer, Berlin

    Book  Google Scholar 

  • McCreary JL (1981) Matching properties, and voltage and temperature dependence on MOS capacitors. IEEE J Solid-State Circuits SC-16(6):608–616

    Article  Google Scholar 

  • Park S-B, Wilson JE, Ismail M (2006) Peak detectors for multistandard wireless receivers. IEEE Circuits Devices Mag 22(6):6–9

    Article  Google Scholar 

  • Razavi B (2001) Design of high-speed circuits for optical communication systems. IEEE Custom Integr Circuits Conf 315–322

    Google Scholar 

  • Razavi B (2008) Fundamentals of microelectronics. Wiley, Hoboken

    Google Scholar 

  • Säckinger E, Fischer WC (2000) A 3-GHz 32-dB CMOS limiting amplifier for SONET OC-48 reveivers. IEEE J Solid-State Circuits 35(12):1884–1888

    Article  Google Scholar 

  • Säckinger E (2005) Broadband circuits for optical fiber communication. Wiley, Hoboken

    Book  Google Scholar 

  • Sanz MT, Celma S, Calvo B (2005) High linear digitally programmable gain amplifier. In: Proceedings of the 2005 IEEE international symposium on circuits and systems, vol 1, pp 208–211

    Google Scholar 

  • Schneider K, Zimmermann H (2006) Highly sensitive optical receivers, Springer series in advanced microelectronics. Springer, Berlin

    Google Scholar 

  • Snelgrove WM, Shoval A (1992) A balanced 0.9-um CMOS transconductance-C filter tunable over the VHF range. IEEE J Solid-State Circuits 27(3):314–322

    Article  Google Scholar 

  • IEEE Std. 802.3af-2003

    Google Scholar 

  • Tsai C-M, Chen W-T (2007) A 40 mW 3.5 kΩ 3 Gb/s CMOS differential transimpedance amplifier using negative-impedance compensation. IEEE Int Solid-State Circuits Conf, pp 52–53, 586

    Google Scholar 

  • Wang I-H, Chen W-S, Liu S-I (2005) A 5 Gbps CMOS automatic gain control amplifier for 10GBase-LX. In: Proceedings of the 2005 IEEE Asian solid-state circuits conference, pp 169–172

    Google Scholar 

  • Wu C, Liu C, Liu S (2004) A 2 GHz CMOS variable-gain amplifier with 50 dB linear-in-magnitude controlled gain range for 10GBase-LX4 ethernet. IEEE Int Solid-State Circuits Conf 1:484–541

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Aznar .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aznar, F., Celma, S., Calvo, B. (2013). Post-Amplifier. In: CMOS Receiver Front-ends for Gigabit Short-Range Optical Communications. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3464-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3464-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3463-4

  • Online ISBN: 978-1-4614-3464-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics