Immunoregulation by Naturally Occurring and Disease-Associated Autoantibodies

Binding to Cytokines and Their Role in Regulation of T-Cell Responses
  • Claus H. NielsenEmail author
  • Klaus Bendtzen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 750)


The role of naturally occurring autoantibodies (NAbs) in homeostasis and in disease manifestations is poorly understood. In the present chapter, we review how NAbs may interfere with the cytokine network and how NAbs, through formation of complement-activating immune complexes with soluble self-antigens, may promote the uptake and presentation of self-molecules by antigen-presenting cells. Both naturally occurring and disease-associated autoantibodies against a variety of cytokines have been reported, including NAbs against interleukin (IL)-1α, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, interferon (IFN)-α, IFN-β, IFN-γ, macrophage chemotactic protein-1 and IL-21. NAbs against a variety of other self-antigens have also been reported, and using thyroglobulin as an example we discuss how NAbs are capable of promoting uptake of immune complexes via complement receptors and Fc-receptors on antigen-presenting cells and thereby regulate T-cell activity. Knowledge of the influence of NAbs against cytokines on immune homeostasis is likely to have wide-ranging implications both in understanding pathogenesis and in treatment of many immunoinflammatory disorders, including a number of autoimmune and autoinflammatory diseases.


Myelin Basic Protein Autoimmune Thyroid Disease Pulmonary Alveolar Proteinosis Thyroid Peroxidase Pulmonary Alveolar Proteinosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ochsenbein AF, Fehr T, Lutz C et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999; 286:2156–9. PMID: 10591647 doi:10.1126/science.286.5447.2156PubMedCrossRefGoogle Scholar
  2. 2.
    Grabar P. Hypothesis. Auto-antibodies and immunological theories: an analytical review. Clin Immunol Immunopathol 1975; 4:453–66. PMID: 1239347 doi:10.1016/0090-1229(75)90087-2PubMedCrossRefGoogle Scholar
  3. 3.
    Lutz HU, Flepp R, Stringaro-Wipf G. Naturally occurring autoantibodies to exoplasmic and cryptic regions of band 3 protein, the major integral membrane protein of human red blood cells. J Immunol 1984; 133:2610–8. PMID:6481164PubMedGoogle Scholar
  4. 4.
    Lutz HU, Bussolino F, Flepp R et al. Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythrocytes. Proc Natl Acad Sci USA 1987; 84:7368–72. PMID:3313392 doi:10.1073/pnas.84.21.7368PubMedCrossRefGoogle Scholar
  5. 5.
    Bendtzen K, Svenson M, Jønsson V et al. Autoantibodies to cytokines — friends or foes? Immunol Today 1990; 11:167–9. PMID:2186750 doi:10.1016/0167-5699(90)90068-KPubMedCrossRefGoogle Scholar
  6. 6.
    Avrameas S. Natural autoantibodies: From “horror autotoxicus” to “gnothi seauton”. Immunol Today 1991; 12:154–9. PMID:1715166PubMedGoogle Scholar
  7. 7.
    Marchalonis JJ, Kaveri S, Lacroix-Desmazes S et al. Natural recognition repertoire and the evolutionary emergence ofthe combinatorial immune system. FASEB J2002; 16:842–8. PMID: 12039866 doi: 10.1096/fj.01-0953hypGoogle Scholar
  8. 8.
    Mirilas P, Fesel C, Guilbert B et al. Natural antibodies in childhood: development, individual stability, and injury effect indicate acontribution to immune memory. J Clin Immunol 1999; 19:109–15. PMID: 10226885 doi: 10.1023/A: 1020554500266PubMedCrossRefGoogle Scholar
  9. 9.
    Bendtzen K, Svenson M. Cytokine autoantibodies. In: Shoenfeld Y, Meroni PL, Gershwin ME, eds. Autoantibodies. Elsevier Press, 2007:299–307.Google Scholar
  10. 10.
    Merbl Y, Zucker-Toledano M, Quintana FJ et al. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest 2007; 117:712–8. PMID: 17332892 doi:10.1172/JCI29943PubMedCrossRefGoogle Scholar
  11. 11.
    Watanabe M, Uchida K, Nakagaki K et al. High avidity cytokine autoantibodies in health and disease: pathogenesis and mechanisms. Cytokine Growth Factor Rev 2010; 21:263–73. PMID:20417147 doi:10.1016/j.cytogfr.2010.03.003PubMedCrossRefGoogle Scholar
  12. 12.
    Browne SK, Holland SM. Anticytokine autoantibodies in infectious diseases: pathogenesis and mechanisms. Lancet Infect Dis 2010; 10:875–85. PMID:21109174 doi:10.1016/S1473-3099(10)70196-1PubMedCrossRefGoogle Scholar
  13. 13.
    Galle P, Svenson M, Bendtzen K et al. High levels of neutralizing IL-6 autoantibodies in 0.1% of apparently healthy blood donors. Eur J Immunol 2004; 34:3267–75. PMID:15368270 doi:10.1002/eji.200425268PubMedCrossRefGoogle Scholar
  14. 14.
    Bendtzen K, Hansen MB, Ross C et al. High-avidity autoantibodies to cytokines. Immunol Today 1998; 19:209–11. PMID:9613037 doi:10.1016/S0167-5699(98)01252-3PubMedCrossRefGoogle Scholar
  15. 15.
    Bendtzen K, Ross C, Hansen MB et al. Natural and induced anti-cytokine antibodies. In: Ciliberto G, Savino R, eds. Cytokine inhibitors. New York: Marcel Dekker, 2000:53–95.Google Scholar
  16. 16.
    Bendtzen K, Hansen MB, Ross C et al. Detection of autoantibodies to cytokines. Mol Biotechnol 2000; 14:251–61. PMID:10890016 doi:10.1385/MB:14:3:251PubMedCrossRefGoogle Scholar
  17. 17.
    Ross C, Svenson M, Nielsen H et al. Increased in vivo antibody activity against interferon a, interleukin-1 alpha, and interleukin-6 after high-dose Ig therapy. Blood 1997; 90:2376–80. PMID:9310488PubMedGoogle Scholar
  18. 18.
    Wadhwa M, Meager A, Dilger P et al. Neutralizing antibodies to granulocyte-macrophage colony-stimulating factor, interleukin-1 alpha and interferon-alpha but not other cytokines in human immunoglobulin preparations. Immunology 2000; 99:113–23. PMID:10651949 doi:10.1046/j.l365-2567.2000.00949.xPubMedCrossRefGoogle Scholar
  19. 19.
    Svenson M, Poulsen LK, Fomsgaard A et al. IgG autoantibodies against interleukin la in sera of normal individuals. Scand J Immunol 1989; 29:489–92. PMID:2785711 doi:10.1111/j.1365-3083.1989.tb01149.xPubMedCrossRefGoogle Scholar
  20. 20.
    Svenson M, Hansen MB, Bendtzen K. Distribution and characterization of autoantibodies to interleukin 1 a in normal human sera. Scand J Immunol 1990; 32:695–701. PMID:2270440 doi: 10.1111/j. 1365-3083.1990. tb03212.xPubMedCrossRefGoogle Scholar
  21. 21.
    Svenson M, Hansen MB, Kayser L et al. Effects of human anti-IL-1 alpha autoantibodies on receptor binding and biological activities of IL-1. Cytokine 1992; 4:125–33. PMID:1385986 doi:10.1016/1043-4666(92)90047-UPubMedCrossRefGoogle Scholar
  22. 22.
    Müller K, Hansen MB, Zak M et al. Autoantibodies to IL-1 alpha in sera from umbilical cords, children, and adults, and from patients with juvenile chronic arthritis. Scand J Rheumatol 1996; 25:164–7. PMID: 8668960 doi:10.3109/03009749609080008PubMedCrossRefGoogle Scholar
  23. 23.
    Garrone P, Djossou O, Fossiez F et al. Generation and characterization of a human monoclonal autoantibody that acts as a high affinity interleukin-1 alpha specific inhibitor. Mol Immunol 1996; 33:649–58. PMID:8760277 doi:10.1016/0161-5890(96)00017-XPubMedCrossRefGoogle Scholar
  24. 24.
    Hansen MB, Svenson M, Diamant M et al. Anti-interleukin-6 antibodies in normal human serum. Scand J Immunol 1991; 33:777–81. PMID:2047765 doi: 10.1111/j. 1365-3083.1991.tb02552.xPubMedCrossRefGoogle Scholar
  25. 25.
    Bendtzen K, Hansen MB, Diamant M et al. Naturally occurring autoantibodies to interleukin-1 alpha, interleukin-6, interleukin-10 and interferon-alpha. J Interferon Res 1994; 14:157–8. PMID:7822860 doi: 10.1089/jir. 1994.14.157PubMedCrossRefGoogle Scholar
  26. 26.
    de Lemos Rieper C, Galle P, Pedersen BK et al. A state of acquired IL-10 deficiency in 0.4% of Danish blood donors. Cytokine 2010; 51:286–93. PMID:20638860 doi:10.1016/j.cyto.2010.06.009PubMedCrossRefGoogle Scholar
  27. 27.
    Uchida K, Nakata K, Suzuki T et al. Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood 2009; 113:2547–56. PMID: 19282464PubMedGoogle Scholar
  28. 28.
    Leonard EJ. Plasma chemokine and chemokine-autoantibody complexes in health and disease. Methods 1996; 10:150–7. PMID:8812657 doi: 10.1006/meth. 1996.0089PubMedCrossRefGoogle Scholar
  29. 29.
    Prümmer O, Seyfarth C, Scherbaum A et al. Interferon-alpha antibodies in autoimmune diseases. J Interferon Res 1989; 9(Suppl. 1):S67–74. PMID:2681443PubMedGoogle Scholar
  30. 30.
    Meager A. Natural autoantibodies to interferons. J Interferon Cytokine Res 1997; 17(Suppl. 1):S5l–3. PMID:9241617Google Scholar
  31. 31.
    Meager A, Wadhwa M, Dilger P et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol 2003; 132:128–36. PMID: 12653847 doi: 10.1046/j. 1365-2249.2003.02113.xPubMedCrossRefGoogle Scholar
  32. 32.
    Meloni A, Furcas M, Cetani F et al. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab 2008; 93:4389–97. PMID:18728167 doi:10.1210/jc.2008-0935PubMedCrossRefGoogle Scholar
  33. 33.
    Kisand K, Link M, Wolff AS et al. Interferon autoantibodies associated with AIRE deficiency decrease the expression of IFN-stimulated genes. Blood 2008; 112:2657–66. PMID:18606876 doi: 10.1182/blood-2008-03-144634PubMedCrossRefGoogle Scholar
  34. 34.
    Kisand K, Boe Wolff AS, Podkrajsek KT et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med 2010; 207:299–308. PMID:20123959 doi:10.1084/jem.20091669PubMedCrossRefGoogle Scholar
  35. 35.
    Graudal NA, Svenson M, Tarp U et al. Autoantibodies against interleukin 1alpha in rheumatoid arthritis: Association with long-term radiographic outcome. Ann Rheum Dis 2002; 61:598–602. PMID: 12079899 doi:10.1136/ard.61.7.598PubMedCrossRefGoogle Scholar
  36. 36.
    Niki Y, Yamada H, Kikuchi T et al. Membrane-associated IL-1 contributes to chronic synovitis and cartilage destruction in human IL-1 alpha transgenic mice. J Immunol 2004; 172:577–84. PMID: 14688369PubMedGoogle Scholar
  37. 37.
    Homann C, Hansen MB, Graudal N et al. Anti-interleukin-6 autoantibodies in plasma are associated with an increased frequency of infections and increased mortality of patients with alcoholic cirrhosis. Scand J Immunol 1996; 44:623–9. PMID:8972745 doi:10.1046/j. 1365-3083.1996.d01-344.xPubMedCrossRefGoogle Scholar
  38. 38.
    Graudal N, Jürgens G, Jurik AG et al. Autoantibodies against interleukin-6 in rheumatoid arthritis. Rheumatology 2001; 40:25.Google Scholar
  39. 39.
    Fosgerau K, Galle P, Hansen T et al. Interleukin-6 autoantibodies are involved in the pathogenesis of a subset of type 2 diabetes. J Endocrinol 2010; 204:265–73. PMID:20016056 doi:10.1677/JOE-09-0413PubMedCrossRefGoogle Scholar
  40. 40.
    Uchida K, Beck DC, Yamamoto T et al. GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N Engl J Med 2007; 356:567–79. PMID: 17287477 doi:10.1056/NEJMoa062505PubMedCrossRefGoogle Scholar
  41. 41.
    Sakagami T, Beck D, Uchida K et al. Patient-derived granulocyte/macrophage colony-stimulating factor autoantibodies reproduce pulmonary alveolar proteinosis in nonhuman primates. Am J Respir Crit Care Med 2010; 182:49–61. PMID:20224064 doi:10.1164/rccm.201001-0008OCPubMedCrossRefGoogle Scholar
  42. 42.
    Hellmich B, Csernok E, Schatz H et al. Autoantibodies against granulocyte colony-stimulating factor in Felty’s syndrome and neutropenic systemic lupus erythematosus. Arthritis Rheum 2002; 46:2384–91. PMID:12355486 doi:10.1002/art.l0497PubMedCrossRefGoogle Scholar
  43. 43.
    Meyer CN, Svenson M, Larsen CS et al. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients. APMIS 2000; 108:122–30. PMID: 10737457 doi:10.1034/j.l600-0463.2000.d01-35.xPubMedCrossRefGoogle Scholar
  44. 44.
    Ebert EC, Panja A, Das KM et al. Patients with inflammatory bowel disease may have a transforming growth factor-beta-, interleukin (IL)-2-or IL-10-deficient state induced by intrinsic neutralizing antibodies. Clin Exp Immunol 2009; 155:65–71. PMID:19076830 doi:10.1111/j.l365-2249.2008.03802.xPubMedCrossRefGoogle Scholar
  45. 45.
    Burbelo PD, Browne SK, Sampaio EP et al. Anti-cytokine autoantibodies are associated with opportunistic infection in patients with thymic neoplasia. Blood 2010; 116:4848–58. PMID:20716769 doi:10.1182/blood-2010-05-286161PubMedCrossRefGoogle Scholar
  46. 46.
    Puel A, Doffinger R, Natividad A et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 2010; 207:291–7. PMID:20123958 doi:10.1084/jem.20091983PubMedCrossRefGoogle Scholar
  47. 47.
    Krupa A, Fudala R, Stankowska D et al. Anti-chemokine autoantibody:chemokine immune complexes activate endothelial cells via IgG receptors. Am J Respir Cell Mol Biol 2009; 41:155–69. PMID: 19109244 doi:10.1165/rcmb.2008-0183OCPubMedCrossRefGoogle Scholar
  48. 48.
    Vallbracht A, Treuner J, Flehmig B et al. Interferon-neutralizing antibodies in a patient treated with human fibroblast interferon. Nature 1981; 289:496–7. PMID:6162104 doi:10.1038/289496a0PubMedCrossRefGoogle Scholar
  49. 49.
    Otsuka S, Handa H, Yamashita J. High titer of interferon (IFN)-neutralizing antibody in a patient with glioblastomatreated with IFN-alpha. Case report. J Neurosurg l984; 61:591–3. PMID:6086859 doi:10.3171/jns.1984.61.3.0591CrossRefGoogle Scholar
  50. 50.
    Quesada JR, Rios A, Swanson D et al. Antitumor activity of recombinant-derived interferon alpha in metastatic renal cell carcinoma. J Clin Oncol 1985; 3:1522–8. PMID:4056843PubMedGoogle Scholar
  51. 51.
    Antonelli G. Development of neutralizing and binding antibodies to interferon (IFN) in patients undergoing IFN therapy. Antiviral Res 1994; 24:235–44. PMID:7526794 doi: 10.1016/0166-3542(94)90070-1PubMedCrossRefGoogle Scholar
  52. 52.
    Bendtzen K. Natural and therapy-induced antibodies to cytokines. Drug Discov Today 2004; 9:259. PMID:15003242 doi:10.1016/S1359-6446(03)03004-6PubMedCrossRefGoogle Scholar
  53. 53.
    Schellekens H, Casadevall N. Immunogenicity of recombinant human proteins: causes and consequences. JNeurol 2004; 251(Suppl 2):II4–9. PMID:15264106 doi:10.1007/s00415-004-1202-9Google Scholar
  54. 54.
    Bendtzen K. Critical review: Assessment of interferon-beta immunogenicity in multiple sclerosis. J Interferon Cytokine Res 2010; 30:759–66. PMID:20874253 doi:10.1089/jir.2010.0091PubMedCrossRefGoogle Scholar
  55. 55.
    Kromminga A, Schellekens H. Antibodies against erythropoietin and other protein-based therapeutics: An Overview. Ann N Y Acad Sci 2005; 1050:257–65. PMID: 16014541 doi: 10.1196/annals. 1313.027PubMedCrossRefGoogle Scholar
  56. 56.
    Nielsen CH, Brix TH, Leslie RG et al. A role for autoantibodies in enhancement of pro-inflammatory cytokine responses to a self-antigen, thyroid peroxidase. Clin Immunol 2009; 133:218–27. PMID: 19726232 doi:10.1016/j.clim.2009.07.014PubMedCrossRefGoogle Scholar
  57. 57.
    Shibuya A, Sakamoto N, Shimizu Y et al. Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes. Nat Immunol 2000; 1:441–6. PMID: 11062505 doi: 10.1038/80886PubMedCrossRefGoogle Scholar
  58. 58.
    Nielsen CH, Leslie RG, Jepsen BS et al. Natural autoantibodies and complement promote the uptake of a self antigen, human thyroglobulin, by B cells and the proliferation of thyroglobulin-reactive CD4+ T cells in healthy individuals. Eur J Immunol 2001; 31:2660–8. PMID:11536164 doi:10.1002/1521-4141(200109)31:9<2660∷AID-IMMU2660>3.0.CO;2-EPubMedCrossRefGoogle Scholar
  59. 59.
    Nielsen CH, Hegedüs L, Leslie RGQ. Autoantibodies in autoimmune thyroid disease promote immune complex formation with self antigens and increase B cell and CD4+ T cell proliferation in response to self antigens. Eur J Immunol 2004; 34:263–72. PMID:14971052 doi:10.1002/eji.200324413PubMedCrossRefGoogle Scholar
  60. 60.
    Thornton BP, Vetvicka V, Ross GD. Natural antibody and complement-mediated antigen processing and presentation by B lymphocytes. J Immunol 1994; 152:1727–37. PMID:8120381PubMedGoogle Scholar
  61. 61.
    Thornton BP, Vetvicka V, Ross GD. Function of C3 in a humoral response: iC3b/C3dg bound to an immune complex generated with natural antibody and aprimary antigen promotes antigen uptake and the expression of co-stimulatory molecules by all B cells, but only stimulates immunoglobulin synthesis by antigen-specific B cells. Clin Exp Immunol 1996; 104:531–7. PMID:9099940 doi: 10.1046/j. 1365-2249.1996.57761.xPubMedCrossRefGoogle Scholar
  62. 62.
    Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature 1985; 314:537–9. PMID:3157869 doi: 10.1038/314537a0PubMedCrossRefGoogle Scholar
  63. 63.
    Arvieux J, Yssel H, Colomb MG. Antigen-bound C3b and C4b enhance antigen-presenting cell function in activation of human T-cell clones. Immunology 1988; 65:229–35. PMID:2973431PubMedGoogle Scholar
  64. 64.
    Boackle SA, Morris MA, Holers VM et al. Complement opsonization is required for presentation of immune complexes by resting peripheral blood B cells. J Immunol 1998; 161:6537–43. PMID:9862679PubMedGoogle Scholar
  65. 65.
    Hedegaard CJ, Chen N, Sellebjerg F et al. Autoantibodies to myelin basic protein (MBP) in healthy individuals and in patients with multiple sclerosis: a role in regulating cytokine responses to MBP. Immunology 2009; 128:e451–61. PMID:19191913 doi: 10.1111/j.l365-2567.2008.02999.xPubMedCrossRefGoogle Scholar
  66. 66.
    Nielsen CH, Moeller AC, Hegedüs L et al. Self-reactive CD4(+) T cells and B cells in the blood in health and autoimmune disease: Increased frequency of thyroglobulin-reactive cells in Graves’ disease. J Clin Immunol 2006; 26:126–37. PMID: 16602033 doi:10.1007/sl0875-006-9000-zPubMedCrossRefGoogle Scholar
  67. 67.
    Celis E, Chang TW. Antibodies to hepatitis B surface antigen potentiate the response of human T lymphocyte clones to the same antigen. Science 1984; 224:297–9. PMID:6231724 doi:10.1126/science.6231724PubMedCrossRefGoogle Scholar
  68. 68.
    Perkins KA, Chain BM. Presentation by peritoneal macrophages: modulation by antibody-antigen complexes. Immunology 1986; 58:15–21. PMID:3486817PubMedGoogle Scholar
  69. 69.
    Manca F, Fenoglio D, Li Pira G et al. Effect of antigen/antibody ratio on macrophage uptake, processing, and presentation to T cells of antigen complexed with polyclonal antibodies. J Exp Med 1991; 173:37–48. PMID:1985125 doi:10.1084/jem.l73.1.37PubMedCrossRefGoogle Scholar
  70. 70.
    Askenase PW, Tsuji RF. B-1 B cell IgM antibody initiates T cell elicitation of contact sensitivity. Curr Top Microbiol Immunol 2000; 252:171–7. PMID: 11125474PubMedCrossRefGoogle Scholar
  71. 71.
    Moore KW, de Waal Malefyt R, Coffman RL et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19:683–765. PMID:11244051 doi:10.1146/annurev.immunol.l9.1.683PubMedCrossRefGoogle Scholar
  72. 72.
    Nielsen CH, Galdiers MP, Hedegaard CJ et al. The self-antigen, thyroglobulin, induces antigen-experienced CD4 T cells from healthy donors to proliferate and promote production of the regulatory cytokine, interleukin-10, by monocytes. Immunology 2010; 129:291–9. PMID: 19845795 doi:10.1111/j.1365-2567.2009.03183.XPubMedCrossRefGoogle Scholar
  73. 73.
    Nielsen CH, Hegedüs L, Rieneck K et al. Production of interleukin (IL)-5 and IL-10 accompanies T helper cell type 1 (Th1) cytokine responses to a major thyroid self-antigen, thyroglobulin, in health and autoimmune thyroid disease. Clin Exp Immunol 2007; 147:287–95. PMID: 17223970 doi: 10.1111/j.1365-2249.2006.03283.XPubMedCrossRefGoogle Scholar
  74. 74.
    McLachlan SM, Pegg CA, Atherton MC et al. Subpopulations ofthyroid autoantibody secreting lymphocytes in Graves’ and Hashimoto thyroid glands. Clin Exp Immunol 1986; 65:319–28. PMID:3791700PubMedGoogle Scholar
  75. 75.
    Bendtzen K, Svenson M, Hansen M. Autoantibodies to cytokines in IVIG. J Rheumatol 1993; 20:2176–7. PMID:8014961PubMedGoogle Scholar
  76. 76.
    Hurez V, Dietrich G, Kaveri SV et al. Polyreactivity is a property of natural and disease-associated human autoantibodies. Scand J Immunol 1993; 38:190–6. PMID:8346418 doi:10.1111/j.l365-3083.1993.tb01712.xPubMedCrossRefGoogle Scholar
  77. 77.
    Dietrich G, Kazatchkine MD. Normal immunoglobulin G (IgG) for therapeutic use (intravenous Ig) contain antiidiotypic specificities against an immunodominant, disease-associated, cross-reactive idiotype of human anti-thyroglobulin autoantibodies. J Clin Invest 1990; 85:620–5. PMID:2312717 doi: 10.1172/JCI114483PubMedCrossRefGoogle Scholar
  78. 78.
    Dietrich G, Piechaczyk M, Pau B et al. Evidence for a restricted idiotypic and epitopic specificity of anti-thyroglobulin autoantibodies in patients with autoimmune thyroiditis. Eur J Immunol 1991; 21:811–4. PMID:1707008 doi:10.1002/eji.l830210340PubMedCrossRefGoogle Scholar
  79. 79.
    Piechaczyk M, Bouanani M, Salhi SL et al. Antigenic domains on the human thyroglobulin molecule recognized by autoantibodies in patients’ sera and by natural autoantibodies isolated from the sera of healthy subjects. Clin Immunol Immunopathol 1987; 45:114–21. PMID:2441914 doi: 10.1016/0090-1229(87)90117-6PubMedCrossRefGoogle Scholar
  80. 80.
    Bouanani M, Piechaczyk M, Pau B et al. Significance of the recognition of certain antigenic regions on the human thyroglobulin molecule by natural autoantibodies from healthy subjects. J Immunol 1989; 143:1129–32. PMID:2473118PubMedGoogle Scholar
  81. 81.
    McLachlan SM, Rapoport B. Genetic and epitopic analysis of thyroid peroxidase (TPO) autoantibodies: markers ofthe human thyroid autoimmune response. Clin Exp Immunol 1995; 101:200–6. PMID: 7544244PubMedGoogle Scholar
  82. 82.
    Gardas A, Watson PF, Hobby P et al. Human thyroid peroxidase: mapping of autoantibodies, conformational epitopes to the enzyme surface. Redox Rep 2000; 5:237–41. PMID: 10994879 doi:10.1179/135100000101535681PubMedCrossRefGoogle Scholar
  83. 83.
    Jastrzebska-Bohaterewicz E, Gardas A. Proportion of antibodies to the A and B immunodominant regions of thyroid peroxidase in Graves and Hashimoto disease. Autoimmunity 2004; 37:211–6. PMID: 15497454 doi: 10.1080/0891693042000193339PubMedCrossRefGoogle Scholar
  84. 84.
    Nielsen CH, Brix TH, Gardas A et al. Epitope recognition patterns of thyroid peroxidase autoantibodies in healthy individuals and patients with Hashimoto’s thyroiditis. Clin Endocrinol (Oxf) 2008; 69:664–8. PMID:18363888 doi:10.1111/j.l365-2265.2008.03245.xCrossRefGoogle Scholar
  85. 85.
    Brix TH, Heged XSL, Gardas A et al. Monozygotic twin pairs discordant for Hashimoto’s thyroiditis share a high proportion of thyroid peroxidase autoantibodies to the immunodominant region A. Further evidence for genetic transmission of epitopic “fingerprints”. Autoimmunity 2011; 44:188–94. PMID:20883148 doi:10.3109/08916934.2010.518575PubMedCrossRefGoogle Scholar
  86. 86.
    Jaume JC, Burek CL, Hoffman WH et al. Thyroid peroxidase autoantibody epitopic ‘fingerprints’ injuvenile Hashimoto’s thyroiditis: evidence for conservation over time and in families. Clin Exp Immunol 1996; 104:115–23. PMID:8603516 doi: 10.1046/j. 1365-2249.1996.d01-659.xPubMedCrossRefGoogle Scholar
  87. 87.
    Avrameas S, Guilbert B, Dighiero G. Natural antibodies against tubulin, actin myoglobin, thyroglobulin, fetuin, albumin and transferrin are present in normal human sera, and monoclonal immunoglobulins from multiple myeloma and Waldenstrom’s macroglobulinemia may express similar antibody specificities. Ann Immunol (Paris) 1981; 132C:231–6. PMID:6171189Google Scholar
  88. 88.
    Guilbert B, Dighiero G, Avrameas S. Naturally occurring antibodies against nine common antigens in human sera. I. Detection, isolation and characterization. J Immunol 1982; 128:2779–87. PMID:6176652PubMedGoogle Scholar
  89. 89.
    Matsiota P, Blancher A, Doyon B et al. Comparative study of natural autoantibodies in the serum and cerebrospinal fluid of normal individuals and patients with multiple sclerosis and other neurological diseases. Ann Inst Pasteur Immunol 1988; 139:99–108. PMID:3258758 doi: 10.1016/0769-2625(88)90134-1PubMedCrossRefGoogle Scholar
  90. 90.
    Chen ZJ, Wheeler CJ, Shi W et al. Polyreactive antigen-binding B cells are the predominant cell type in the newborn B cell repertoire. Eur J Immunol 1998; 28:989–94. PMID:9541594 doi:10.1002/(SICI)1521-4141(199803)28:03<989∷AID-IMMU989>3.0.CO;2-lPubMedCrossRefGoogle Scholar
  91. 91.
    Ailus K, Palosuo T. IgM class autoantibodies in human cord serum. J Reprod Immunol 1995; 29:61–7. PMID:8531192 doi:10.1016/0165-0378(95)00933-CPubMedCrossRefGoogle Scholar
  92. 92.
    Birk OS, Cohen IR. T-cell autoimmunity in type 1 diabetes mellitus. Curr Opin Immunol 1993; 5:903–9. PMID:8297523 doi:10.1016/0952-7915(93)90104-ZPubMedCrossRefGoogle Scholar
  93. 93.
    Lutz HU, Wipf G. Naturally occurring autoantibodies to skeletal proteins from human red blood cells. J Immunol 1982; 128:1695–9. PMID: 7061846PubMedGoogle Scholar
  94. 94.
    Vassilev TL, Veleva KV. Natural polyreactive IgA and IgM autoantibodies in human colostrum. Scand J Immunol 1996; 44:535–9. PMID:8947607 doi: 10.1046/j. 1365-3083.1996.d01-333.xPubMedCrossRefGoogle Scholar
  95. 95.
    Lacroix-Desmazes S, Misra N, Bayry J et al. Autoantibodies to factor VIII. Autoimmun Rev 2002; 1:105–10. PMID:12849066 doi:10.1016/S1568-9972(01)00017-9PubMedCrossRefGoogle Scholar
  96. 96.
    Kaveri S, Vassilev T, Hurez V et al. Antibodies to a conserved region of HLA class I molecules, capable of modulating CD8 T cell-mediated function, are present in pooled normal immunoglobulin for therapeutic use. J Clin Invest 1996; 97:865–9. PMID:8609246 doi: 10.1172/JCI118488PubMedCrossRefGoogle Scholar
  97. 97.
    Pashov A, Kenderov A, Kyurkchiev S et al. Autoantibodies to heat shock protein 90 in the human natural antibody repertoire. Int Immunol 2002; 14:453–61. PMID:11978775 doi:10.1093/intimm/14.5.453PubMedCrossRefGoogle Scholar
  98. 98.
    Robey IF, Schluter SF, Yocum DE et al. Production and characterization of monoclonal IgM autoantibodies specificfortheT-cellreceptor. J Protein Chem 2000; 19:9–21. PMID: 10882168 doi: 10.1023/A:1007086608036PubMedCrossRefGoogle Scholar
  99. 99.
    Dietrich G, Pereira P, Algiman M et al. A monoclonal anti-idiotypic antibody against the antigen-combining site of anti-factor VIII autoantibodies defines and idiotope that is recognized by normal human polyspecific immunoglobulins for therapeutic use (IVIg). J Autoimmun 1990; 3:547–57. PMID:1701301 doi: 10.1016/S0896-8411(05)80020-4PubMedCrossRefGoogle Scholar
  100. 100.
    Jensen EA, Petersen PH, Blaabjerg O et al. Establishment of reference distributions and decision values for thyroid antibodies against thyroid peroxidase (TPOAb), thyroglobulin (TgAb) and the thyrotropin receptor (TRAb). Clin Chem Lab Med 2006; 44:991–8. PMID:16879067 doi:10.1515/CCLM.2006.166PubMedCrossRefGoogle Scholar
  101. 101.
    Nielsen CH, El Fassi D, Hasselbalch HC et al. B-cell depletion with rituximab in the treatment of autoimmune diseases: Graves’ ophthalmopathy the latest addition to an expanding family. Expert Opin Biol Ther 2007; 7:1061–78. PMID:17665994 doi:10.1517/14712598.7.7.1061PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Institute for Inflammation Research, Department of RheumatologyCopenhagen University HospitalRigshospitalet, CopenhagenDenmark

Personalised recommendations